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Addition

•The add function is fundamental to
determining processor cycle time and hence
overall performance.

•Add algorithms have been widely studied,
so that there are many apparently different
algorithms that actually differ only in some
minute detail.
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Add algorithms

•ripple add: the baseline,

•carry skip adders

•carry selection adds

•carry propagating adds

•Ling adds

•carry saving add

•hybrid add
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Ripple adders

•the baseline: 2n gate delays

•Manchester carry chain

•carry completion
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Bit logic

•(in the following V means exclusive OR)

•Sum: si = ai V bi V ci

•Carry out: ci+1 =aibi + bici + aici

•Propagate: pi = ai + bi

•Generate: gi = aibi

•Carry out is also: ci+1 =  gi + pici
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Manchester adders

•Use a single pass transistor to implement
the pi and another to implement gi

•Fast serial carry chain up to a circuit limit,
less than 8, usually much less. As chain get
longer the capacity seen by the driver
increases quadratically.
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Simplified Manchester carry bit

Chain for Cout
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Carry completion

•Asynchronous adder: E(l) = log2 n

•Create two carry out signals, ci =1and ci =0

•then ci+1 =  gi + pici  and if di+1 is the
complement of  ci+1

• then we must have (ci+1 + di+1) = 1 for each
of the i bits to detect completion (ANDed)

Computer Architecture & Arithmetic Group             10                          Stanford University

Carry skip adders

•single level, multiple levels

•fixed block size, variable block size

•the multi level, fixed block is a type of carry
look ahead

•Babbage’s “carriage anticipation”is a carry
skip adder

Computer Architecture & Arithmetic Group             11                          Stanford University

Carry Skip logic

•
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Carry skip

•Bypass logic for carries based on bit
propagate terms

•So Pi = (p3p2p1) ci has group Pi up to a fan
in limit, r (r=4, above)

•In 2 gate delays the carry span a group.

•Can create a group of groups for faster add.
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Carry skip

•Spans r-1 bits with r limited AND; C2=G1+
(p3p2p1) C1 needs 2 gate delays

•If the carry is rippled in the first and last
block the (single level) skip delay is the
ripple delay + the skip delay

•t = 4(r-1) +2([n/(r-1)] –2)
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Carry select

•conditional sum

•carry select (Bedrij)

•the carry select type adder is widely used as
a component in a hybrid adder.
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Conditional sum

•Partition the n bit operands into n/r bit digits

•For each r-limited digit, form sE and sN , cE

and cN based on cin =1 for sE , cE and cin =0
for sN , cN

•Partition into digit pairs and determine the
sE sE , cE and the sN sN , cN result.

•Continue now for 4 digit groups, etc
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Conditional sum

•Logic within a 4 bit digit
–SN0=A0 V B0 ; SE0 = ~ SN0

–SN1= A1V B1VG0 ;  SE1 = A1V B1VP0

–SN2= A2V B2V(G1+P1G0);
SE2=A2VB2V(G1+P1P0)

–SN3= A3V B3V(G2+ +P2G1 +P2P1G0);
–SE3= A3VB3V(G2+ +P2G1 +P2P1P0);
–CN4 = G3+ P3G2 +P3P2G1+P3P2P1G0

–CE4  = G3+ P3G2 +P3P2G1+P3P2P1P0
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Conditional sum

•For digit pairs the carry outs are
–CE2 = G1+P1P0

–CN2 = G1+P1G0

•The sum pairs, E and N are selected so that
the lsd’s are unaffected and the the msd’s
are unaffected if their carry ins differ, but if
both carry in = 0 replace SE with SN and if
both carry in = 1 replace SN with SE
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Carry select

•Rather than selecting by pairs we can select
up to a fan in limit (r-1)

•C4=CN4 +CE4C0

•C8=CN8 +CE8C4

•C12=CN12 +CE12C8 = CN12 +CE12CN8 +
CE12CE8 CN4  + CE12CE8 CE4C0
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Carry select delay

•Delay consists of digit addition, carry
propagation and final sum selection

•Selection is a MUX:S4= SE4C0+SN4C0

•Delay is  = k + 2[log r-1([n/r]-1)]
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Carry propagating adders

•The most widely studied class of adder:
–carry look ahead

–canonic

–prefix adders
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CLA: carry look ahead adders

•Form p, g terms for each bit, i

•Then C1 = G0+ P0C0; C2 = G1+ P1C1

•C3 = G2+ P2G1 +P2P1G0+P2P1P0C0

•C4 = G3+ P3G2 +P3P2G1+P3P2P1G0

+P3P2P1P0C0

•Group generate:G3+P3G2+P3P2G1+P3P2P1G0

• Group propagate: P3P2P1P0
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Group generate(G’) and Group
propagate(P’)

•C4 = G’0+ P’0C0

•C8 = G’1+ P’1G’0 +P’1P’0C0

•C12 = G’2+ P’2G’1+P’2P’1G’0+P’2P’1P’0C0

•G’’0 = G’3+P’3G’2+P’3P’2G’1+P’3P’2P’1G0

•P’’0= P’3P’2P’1P’0

•C16 = G’’0+ P’’0C0

•C64 = G’’3+P’’3G’’2+P’’3P’’2G’’1 +
P’’3P’’2P’’1G’’0+ propagate and end around
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CLA delay

•C64 is not the worst case delay path, that’s
S63. C48 is formed at the same time as C64

but must form C60 which then forms C63,
then S63

•C60 = G’’ + P’’C48

•C63 = G’ + P’ C60
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CLA delay
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CLA delay

•Requires [logr n] look ahead levels to form
C64 and C48, but [logr n] –1 levels to form
C63 .Thus it takes 2([logr n]) – 1 levels at 2
gates per level. Plus another gate to form p,
g and a final gate to select S63.

•CLA delay = 4 [logr n]
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Canonic and prefix adders

•Prefix is canonic with r = 2

•Canonic uses an irregular implementation
so that each higher order sum bit has its
carry in in the same time as the high order
carry out.
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Fast counters

•Suppose we have xxxxx + 1= sssss. To find
sn and cout we need xnVcin and xncin, but cin

is just the AND of all x terms and the input
“1”.

•So delay is [logr n] + 1 (the AND gates plus
the final V)
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Canonic adders

•The cin is now an AND tree, to generate a
carry from each of the lower order bits and
the OR tree which ORs them together. Both
have n inputs.

•So delay = 2[logr n] + 2, the 2 trees plus a
delay to form the sum (V) and a delay to
form p,g.

•Need a “separate” tree pair for each sum bit,
but many terms can be shared (prefixed).
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AND and OR trees
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Ling adder

•Redefines carry as pseudo carry to eliminate
delay in forming p and g.

•Consider a 6 bit adder with r = 3 and t=aVb

•s6=t6Vc6; c6=G1+P1G0

•G1 =g5+p5g4+p5p4g3

    G0 =g2+p2g1+p2p1g0

•P1= p5p4p3
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Ling adders

•Since g5 = p5g5, all terms in G1 can be
written to have the common factor p5

•This defines the pseudo carry, H

•So s6=t6V(p5h6); h6=H1+P1H0

•H1 =g5+g4+p4g3

    H0 =g2+g1+p1g0

•  here P1= p4p3p2
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Ling adders

•We can eliminate the p,g delay, compare

•G0= a2b2+ a1a2b1 + b2a1b1 + a2a1a0b0 +
a2b1a0b0 + b2a1a0b0 + b2b1aob0

•H0= a2b2+ a1b1 + a1a0b0 + b1a0b0

•We can also generate CLA type H’,P’ and
higher level terms, but the final sum and
carry must include pnhn
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Hybrid adders

•Most modern adders do not follow a pure
strategy but use a combination of
techniques. Perhaps Ling or a Manchester
chain to start, a look ahead then a carry
select for the last selection.

•Results are not clearly defined; adders with
minimum gate delays usually are larger and
the layout (wires) determine the best design


