
Lecture 6EE 486

M.J. Flynn1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 lecture 6: Integer Addition

M. J. Flynn

Computer Architecture & Arithmetic Group 2 Stanford University

Computer Architecture & Arithmetic Group 3 Stanford University

Addition

•The add function is fundamental to
determining processor cycle time and hence
overall performance.

•Add algorithms have been widely studied,
so that there are many apparently different
algorithms that actually differ only in some
minute detail.

Computer Architecture & Arithmetic Group 4 Stanford University

Add algorithms

•ripple add: the baseline,

•carry skip adders

•carry selection adds

•carry propagating adds

•Ling adds

•carry saving add

•hybrid add

Computer Architecture & Arithmetic Group 5 Stanford University

Ripple adders

•the baseline: 2n gate delays

•Manchester carry chain

•carry completion

Computer Architecture & Arithmetic Group 6 Stanford University

Bit logic

•(in the following V means exclusive OR)

•Sum: si = ai V bi V ci

•Carry out: ci+1 =aibi + bici + aici

•Propagate: pi = ai + bi

•Generate: gi = aibi

•Carry out is also: ci+1 = gi + pici

Lecture 6EE 486

M.J. Flynn2

Computer Architecture & Arithmetic Group 7 Stanford University

Manchester adders

•Use a single pass transistor to implement
the pi and another to implement gi

•Fast serial carry chain up to a circuit limit,
less than 8, usually much less. As chain get
longer the capacity seen by the driver
increases quadratically.

Computer Architecture & Arithmetic Group 8 Stanford University

Simplified Manchester carry bit

Chain for Cout

Computer Architecture & Arithmetic Group 9 Stanford University

Carry completion

•Asynchronous adder: E(l) = log2 n

•Create two carry out signals, ci =1and ci =0

•then ci+1 = gi + pici and if di+1 is the
complement of ci+1

• then we must have (ci+1 + di+1) = 1 for each
of the i bits to detect completion (ANDed)

Computer Architecture & Arithmetic Group 10 Stanford University

Carry skip adders

•single level, multiple levels

•fixed block size, variable block size

•the multi level, fixed block is a type of carry
look ahead

•Babbage’s “carriage anticipation”is a carry
skip adder

Computer Architecture & Arithmetic Group 11 Stanford University

Carry Skip logic

•

Computer Architecture & Arithmetic Group 12 Stanford University

Carry skip

•Bypass logic for carries based on bit
propagate terms

•So Pi = (p3p2p1) ci has group Pi up to a fan
in limit, r (r=4, above)

•In 2 gate delays the carry span a group.

•Can create a group of groups for faster add.

Lecture 6EE 486

M.J. Flynn3

Computer Architecture & Arithmetic Group 13 Stanford University

Carry skip

•Spans r-1 bits with r limited AND; C2=G1+
(p3p2p1) C1 needs 2 gate delays

•If the carry is rippled in the first and last
block the (single level) skip delay is the
ripple delay + the skip delay

•t = 4(r-1) +2([n/(r-1)] –2)

Computer Architecture & Arithmetic Group 14 Stanford University

Carry select

•conditional sum

•carry select (Bedrij)

•the carry select type adder is widely used as
a component in a hybrid adder.

Computer Architecture & Arithmetic Group 15 Stanford University

Conditional sum

•Partition the n bit operands into n/r bit digits

•For each r-limited digit, form sE and sN , cE

and cN based on cin =1 for sE , cE and cin =0
for sN , cN

•Partition into digit pairs and determine the
sE sE , cE and the sN sN , cN result.

•Continue now for 4 digit groups, etc

Computer Architecture & Arithmetic Group 16 Stanford University

Conditional sum

•Logic within a 4 bit digit
–SN0=A0 V B0 ; SE0 = ~ SN0

–SN1= A1V B1VG0 ; SE1 = A1V B1VP0

–SN2= A2V B2V(G1+P1G0);
SE2=A2VB2V(G1+P1P0)

–SN3= A3V B3V(G2+ +P2G1 +P2P1G0);
–SE3= A3VB3V(G2+ +P2G1 +P2P1P0);
–CN4 = G3+ P3G2 +P3P2G1+P3P2P1G0

–CE4 = G3+ P3G2 +P3P2G1+P3P2P1P0

Computer Architecture & Arithmetic Group 17 Stanford University

Conditional sum

•For digit pairs the carry outs are
–CE2 = G1+P1P0

–CN2 = G1+P1G0

•The sum pairs, E and N are selected so that
the lsd’s are unaffected and the the msd’s
are unaffected if their carry ins differ, but if
both carry in = 0 replace SE with SN and if
both carry in = 1 replace SN with SE

Computer Architecture & Arithmetic Group 18 Stanford University

Carry select

•Rather than selecting by pairs we can select
up to a fan in limit (r-1)

•C4=CN4 +CE4C0

•C8=CN8 +CE8C4

•C12=CN12 +CE12C8 = CN12 +CE12CN8 +
CE12CE8 CN4 + CE12CE8 CE4C0

Lecture 6EE 486

M.J. Flynn4

Computer Architecture & Arithmetic Group 19 Stanford UniversityComputer Architecture & Arithmetic Group 20 Stanford University

Computer Architecture & Arithmetic Group 21 Stanford University

Carry select delay

•Delay consists of digit addition, carry
propagation and final sum selection

•Selection is a MUX:S4= SE4C0+SN4C0

•Delay is = k + 2[log r-1([n/r]-1)]

Computer Architecture & Arithmetic Group 22 Stanford University

Carry propagating adders

•The most widely studied class of adder:
–carry look ahead

–canonic

–prefix adders

Computer Architecture & Arithmetic Group 23 Stanford University

CLA: carry look ahead adders

•Form p, g terms for each bit, i

•Then C1 = G0+ P0C0; C2 = G1+ P1C1

•C3 = G2+ P2G1 +P2P1G0+P2P1P0C0

•C4 = G3+ P3G2 +P3P2G1+P3P2P1G0

+P3P2P1P0C0

•Group generate:G3+P3G2+P3P2G1+P3P2P1G0

• Group propagate: P3P2P1P0

Computer Architecture & Arithmetic Group 24 Stanford University

Group generate(G’) and Group
propagate(P’)

•C4 = G’0+ P’0C0

•C8 = G’1+ P’1G’0 +P’1P’0C0

•C12 = G’2+ P’2G’1+P’2P’1G’0+P’2P’1P’0C0

•G’’0 = G’3+P’3G’2+P’3P’2G’1+P’3P’2P’1G0

•P’’0= P’3P’2P’1P’0

•C16 = G’’0+ P’’0C0

•C64 = G’’3+P’’3G’’2+P’’3P’’2G’’1 +
P’’3P’’2P’’1G’’0+ propagate and end around

Lecture 6EE 486

M.J. Flynn5

Computer Architecture & Arithmetic Group 25 Stanford University

CLA delay

•C64 is not the worst case delay path, that’s
S63. C48 is formed at the same time as C64

but must form C60 which then forms C63,
then S63

•C60 = G’’ + P’’C48

•C63 = G’ + P’ C60

Computer Architecture & Arithmetic Group 26 Stanford University

CLA delay

Computer Architecture & Arithmetic Group 27 Stanford University

CLA delay

•Requires [logr n] look ahead levels to form
C64 and C48, but [logr n] –1 levels to form
C63 .Thus it takes 2([logr n]) – 1 levels at 2
gates per level. Plus another gate to form p,
g and a final gate to select S63.

•CLA delay = 4 [logr n]

Computer Architecture & Arithmetic Group 28 Stanford University

Canonic and prefix adders

•Prefix is canonic with r = 2

•Canonic uses an irregular implementation
so that each higher order sum bit has its
carry in in the same time as the high order
carry out.

Computer Architecture & Arithmetic Group 29 Stanford University

Fast counters

•Suppose we have xxxxx + 1= sssss. To find
sn and cout we need xnVcin and xncin, but cin

is just the AND of all x terms and the input
“1”.

•So delay is [logr n] + 1 (the AND gates plus
the final V)

Computer Architecture & Arithmetic Group 30 Stanford University

Canonic adders

•The cin is now an AND tree, to generate a
carry from each of the lower order bits and
the OR tree which ORs them together. Both
have n inputs.

•So delay = 2[logr n] + 2, the 2 trees plus a
delay to form the sum (V) and a delay to
form p,g.

•Need a “separate” tree pair for each sum bit,
but many terms can be shared (prefixed).

Lecture 6EE 486

M.J. Flynn6

Computer Architecture & Arithmetic Group 31 Stanford University

AND and OR trees

Computer Architecture & Arithmetic Group 32 Stanford University

Ling adder

•Redefines carry as pseudo carry to eliminate
delay in forming p and g.

•Consider a 6 bit adder with r = 3 and t=aVb

•s6=t6Vc6; c6=G1+P1G0

•G1 =g5+p5g4+p5p4g3

 G0 =g2+p2g1+p2p1g0

•P1= p5p4p3

Computer Architecture & Arithmetic Group 33 Stanford University

Ling adders

•Since g5 = p5g5, all terms in G1 can be
written to have the common factor p5

•This defines the pseudo carry, H

•So s6=t6V(p5h6); h6=H1+P1H0

•H1 =g5+g4+p4g3

 H0 =g2+g1+p1g0

• here P1= p4p3p2

Computer Architecture & Arithmetic Group 34 Stanford University

Ling adders

•We can eliminate the p,g delay, compare

•G0= a2b2+ a1a2b1 + b2a1b1 + a2a1a0b0 +
a2b1a0b0 + b2a1a0b0 + b2b1aob0

•H0= a2b2+ a1b1 + a1a0b0 + b1a0b0

•We can also generate CLA type H’,P’ and
higher level terms, but the final sum and
carry must include pnhn

Computer Architecture & Arithmetic Group 35 Stanford University

Hybrid adders

•Most modern adders do not follow a pure
strategy but use a combination of
techniques. Perhaps Ling or a Manchester
chain to start, a look ahead then a carry
select for the last selection.

•Results are not clearly defined; adders with
minimum gate delays usually are larger and
the layout (wires) determine the best design

