
EE 486Winter 02-03

M. J. Flynn1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 : lecture 5, bounds on
Arithmetic (Winograd’s bounds)

M. J. Flynn

Computer Architecture & Arithmetic Group 2 Stanford University

Bound on add

•Based on (r,d) gate model.

•The (r,d) gate can compute any r input
function in a d valued truth system in a
single gate delay.

•Model bounds number of fan-in limited gate
delays, ignores: fan-out, wires or any other
constraint.

Computer Architecture & Arithmetic Group 3 Stanford University

The (r,d) gate

(r,d gate)

f

d-valued
input line

{ r input
 lines

unit gate delay

Computer Architecture & Arithmetic Group 4 Stanford University

Spira’s lemma

•If a d-valued output f is a function of all n
d-valued input arguments, then t, the
number of (r,d) gate delays, is determined

•t is greater than or equal to ceiling [logr n]
in units of gate delays.

Computer Architecture & Arithmetic Group 5 Stanford University

Spira’s lemma

logic,
implemented in

(r,d) gates

f

{ n input
 lines

t gate delays

Computer Architecture & Arithmetic Group 6 Stanford University

Winograd’s bound on add

•The add bound is the application of Spira’s
lemma to the optimal rns representation. So,
the time for addition is at least, t which is
greater than or equal to

•[logr 2[logd α(N)]],where [] imply ceiling
functions.

•For binary numbers the reduces to [logr 2n]
for the addition of 2 n bit numbers.

EE 486Winter 02-03

M. J. Flynn2

Computer Architecture & Arithmetic Group 7 Stanford University

Winograd’s add bound

•For the bound, the α(N) is the largest
modulus while [logd α(N)] is simply the
number of input lines needed to represent
[α(N)]

•For a prime base (eg 2), α(212) = 212 and for
a composite base, select the largest base
factor (eg 10, or bi-quinary), α(1012) = 512

Computer Architecture & Arithmetic Group 8 Stanford University

Winograd’s add bound

•Bound can be for exactly N (or M in the
rns) or for a representation that has equal or
greater capacity. The latter usually gives a
better bound. We call this α(>M). To find
this we use the optimal rns algorithm and
continue until the prime or prime power
product is equal to or exceeds M.

Computer Architecture & Arithmetic Group 9 Stanford University

Winograd’s add bound

•Despite its limitations the bound can be
closely approached or even bettered (using
some sort of DOT function) by avoiding the
requirements of the (r,d) gate.

•Indeed the bound doesn’t apply at all for a
redundant number representation (rnr);
we’ll see more of this later.

Computer Architecture & Arithmetic Group 10 Stanford University

Bound on Multiply

•Represent numbers as composite of prime
factors or powers of prime factors.

•This is the best representation for numbers
that are to be multiplied or divided.

•Just add/subtract the corresponding prime
factor exponent.

Computer Architecture & Arithmetic Group 11 Stanford University

The log number sys., a practical
realization of the multiply bound

•X can be represented by a sign + log (X).

•In lns Lx = Sx (interger Lx).(fract Lx) this
requires n = 1 + k + f bits. Sx is 0 if X is +
and 1 if X is negative.

•X = (-1) Sx x 2 Lx ; of course the base need
not be 2.

•To represent numbers smaller than 1 use a
bias (as in fpns).

Computer Architecture & Arithmetic Group 12 Stanford University

More on the log number system

To represent numbers less than 1.0 use a
bias, so Lx = Sx (iLx).(fLx) – bias where the
bias would be 2k-1 or 2k-1 - 1 (same as fpns)
Now multiply and divide become easy
 LXY = LX + LY and LX/Y = LX – LY; of
course add/subtract now are much more
complicated
X + Y = X (1+ Y/X) which requires a table
lookup for the (1+ Y/X)

EE 486Winter 02-03

M. J. Flynn3

Computer Architecture & Arithmetic Group 13 Stanford University

More on the log number system

Net… the lns is interesting only in special
applications … signal processing, etc. and
usually is restricted to numbers with limited
precision.

Computer Architecture & Arithmetic Group 14 Stanford University

Back to Winograd’s bound on
Multiply

•Similar reasoning to the add bound but uses
a “log” or exponential representation for
arguments. Result is surprising since it
shows that the multiply delay bound is
always as good as or better than the add
delay.

•[logr 2[logd β(N)]],where [] imply ceiling
functions

Computer Architecture & Arithmetic Group 15 Stanford University

Bound on Multiply

•Note that α(N) > β(N) for all N

•In particular:
–Binary numbers β(2n) is 2n-2

–Prime base β(pn) = max (pn-2, α(pn-1)

–Composite base (base is p1 x p2)= max(β(pi
n)

Computer Architecture & Arithmetic Group 16 Stanford University

Bounds

•Bounds on add, multiply use different
representations (non compatible)

•Bound on add can be used as bound on
multiply on the optimal rns.

•All in all, it’s hard to beat binary!

Computer Architecture & Arithmetic Group 17 Stanford University

What about redundant numbers?

•The bounds don’t apply.

•In rnr the carry is usually limited to one
digit.

•So its always fixed, something like
[logr 2β] but the actual radix and the
redundant radix may differ so it’s a bit more
complicated.

Computer Architecture & Arithmetic Group 18 Stanford University

What about table look up?

•We can develop a fan in limited gate model
for tables. This is NOT a bound, but serves
as an indicator for comparisons.

•Assume a 2-D storage array, with a unit
delay for storage itself. This array is
addressed by n address bits; n/2 address the
X decoder and n/2 address the Y decoder.

EE 486Winter 02-03

M. J. Flynn4

Computer Architecture & Arithmetic Group 19 Stanford University

Table look up

•The X lines select a row, all 2n/2 elements in
the row are accessed. The Y decoder selects
the correct output line. All 2n/2 Y lines are
ORed to an output.

•So X decode = [logr n/2], Y decode =
[logr (n/2)+1], ORing the 2n/2 Y output lines
= [logr 2n/2]

•We could sum these terms, but a better
model is available

Computer Architecture & Arithmetic Group 20 Stanford University

Table look up

•We can overlap the X and Y decode, then
the Y line selects a single gate which is then
ORed as before.

•Now, the delay is = 2[logr n/2] +1+1+
[logr2n/2]

•The first term is the X and Y decode, next
the store gate, then the Y line select, then
the OR logic.

Computer Architecture & Arithmetic Group 21 Stanford University

So, which is better, tables or logic?

•For our table model, it’s pretty clear that
specific logic implementations will give
better (smaller) gate delays. There are
exceptions when the operand sizes are small

•We’ll use tables in divide, square root and
the higher level functions… these will all
tend to be small “starter” tables.

•Note that a better table model is possible
using n dimensional (n >2) tables.

Computer Architecture & Arithmetic Group 22 Stanford University

So, which is better?

•Again it’s hard to beat binary, but there are
special application where either the residue
or the log number systems work well.

•As we’ll see tables and the redundant
number representation. will play a role in
getting the best in arithmetic design.

