EE 486 lecture 18: The Higher Level Functions (HLFs).

M. J. Flynn

The HLF: what are they?

- · Also called the Elementary Functions
- Originally the familiar calculator type functions, trig, log, exponential, n-th root,
- With the advent of DSP, most any analytic function representable as a series, a polynomial or a ratio of polynomials. E.g. the incomplete gamma function.

HLF implementations

- Usually a combination of hardware (esp. for DSP) and software.
- Tradeoffs are precision, time and hardware support cost.
- Three types of approaches
 - Tables (interpolation or series based)
 - Generalized (polynomial, rational or continued fractions)
 - Hardware (CORDIC or multiplier PPAs)

Tables

- As with divide, we can
 - Use a Taylor series expansion about X_h, using multiple tables for the terms in the series.
 - Use a form of interpolation based on one or two tables.
 - For reasonable table sizes, either approach is limited to finding f(X) to about 20b of precision.

Polynomial approximations

- Scale the domain to improve precision.
- Selected coefficients to reduce either maximum error or rms error.
- Apply Horner's rule

$$-F(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

-
$$= (c_n x + c_{n-1})x + \dots + c_1)x + c_0$$

• m th degree polynomial requires m multiply adds.

Computer Architecture & Arithmetic Group

Stanford University

(0000)

Polynomial approximations

- Many different polynomial forms are possible:
 - Taylor series (not the best error term)
 - Chebyshev Polynomial (best max error in [-1,1))
 - Interpolation: n point fit to n th (or lower) degree polynomial. Tradeoff between order (number of multiplies) and points (storage of constants or domain points).

Stanford University

Polynomial approximations

- For common elementary functions the IEEE single precision result requires 3-5 terms; double precision requires 6-10 terms. Less if a table is used to start.
- This are some pre scaling overhead operations, not included.

Stanford University

Rational approximations

- Take the ratio of two polynomials, both of lower degree than required of a polynomial approximation for the same precision.
- R_{m,n} = P_m(x)/ Q_n(x), where m,n are the degrees of the polynomials.
- $R_{m,0} = P_m(x)$, the polynomial approximation.
- Select coefficients and order to give the minimum maximum error.

Numerical coprocessor support

- Hardware supported rational approximation really supports the word size.
- Target mantissa is 67 bits, so as to support the 80b IEEE extended precision.
- Such coprocessors are unusual.

Pre scaling of operands

- To improve the precision it's important to scale the operands into a limited range.
- $$\begin{split} &1) \text{ For sin, cos, and tan, } [a,b] = \left[-\frac{\pi}{4},\frac{\pi}{4}\right] \\ &2) \text{ For in, } [a,b] = \left[\frac{1}{\sqrt{2}},\sqrt{2}\right]. \\ &3) \text{ For sin}^{-1}, \cos^{-1}, [a,b] = \left[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right] \\ &4) \text{ For tan}^{-1}, [a,b] = \left[-1,1\right]. \\ &5) \text{ For } 2^{\times}, [a,b] = \left[0,\frac{1}{2}\right]. \end{split}$$

Computer Architecture & Arithmetic Group

Rational approximations (RA)

- To reduce the computational order many approximations are of the form
- $P_{m,n} = x P_m(x^2)/Q_n(x^2)$,
- Typically P_{4,4} is sufficient to give 67b precision, altho the arc functions require P_{7,7}
- The RA is computationally superior for double or extended precision, for single precision or less CORDIC is preferable.

Computer Architecture & Arithmetic Group

Stanford University

CORDIC

- A bit by bit algorithm that can compute all the trig functions with a small amount of hardware support.
- Basic algorithm gives sine, cosine and tan; generalization gives are and hyperbolic trig.
- Developed in '59 by J. Volder
- Broadly used in calculators and sometimes in processors.

12

Stanford University

CORDIC

- $\tan (\theta) \sim \theta = \alpha_0 + /- \alpha_1 + /- \alpha_2 + /- \dots$ where $\alpha_1 = \tan^{-1} 2^{-i}$ for α_1 , choose + or – so as to bring $(\theta + /- \Sigma \alpha_i) = z_i$ to zero,
- Iterations are $x_{i+1} = x_i /+ (y_i 2^{-i})$, similarly
- $y_{i+1} = y_i + /- (x_i 2^{-i}),$
- $z_{i+1} = z_i /+ (2^{-i})$, select sign so that $z_m = 0$

Stanford University

Computer Architecture & Arithmetic Group

CORDIC

- Produces all trig functions at a bit of precision per iteration
- Each iteration takes 3 adds and a compare.

Using PPA arrays for function evaluation (Schwartz)

- If a multiplier provides a solution to AxB=C by adding pp's then maybe we can use something similar to back solve A op Q
 =B (for divide) or S op S = A for sqrt.
- Solve any problem expressible as a multiplication (even the trig functions)
- Goal: use a FP multiplier's pp array to give an HLF approximation in one multiply time.

PP arrays

- Back solving the reciprocal's equations involves both positive and negative terms.
- In the place of the (3,2) counter we can use a more general structure called a Petritz counter, where each of the 3 inputs can be either positive or negative.
- But this requires special hardware for each function.

PPA conclusions 1. Almost all of the known elementary functions can be computed (usually to within 12-20 bits of precision) in the same time it takes to do one multiplication. 2. The hardware cost of this adaptation consists merely of a few multiplex and logic gates which are input to certain of the partial product array rows. 3. The resulting adaptive multiplier/function unit can be dynamically reconfigured in less than one cycle to perform any of the basic math functions.