
EE 486 Winter 02-03

M. J. Flynn 1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 lecture 18: The Higher Level
Functions (HLFs).

M. J. Flynn

Computer Architecture & Arithmetic Group 2 Stanford University

The HLF: what are they?

• Also called the Elementary Functions

• Originally the familiar calculator type
functions, trig, log, exponential, n-th root,
etc.

• With the advent of DSP, most any analytic
function representable as a series, a
polynomial or a ratio of polynomials. E.g.
the incomplete gamma function.

Computer Architecture & Arithmetic Group 3 Stanford University

HLF implementations

• Usually a combination of hardware (esp. for
DSP) and software.

• Tradeoffs are precision, time and hardware
support cost.

• Three types of approaches
– Tables (interpolation or series based)
– Generalized (polynomial, rational or continued

fractions)
– Hardware (CORDIC or multiplier PPAs)

Computer Architecture & Arithmetic Group 4 Stanford University

Tables

• As with divide, we can
– Use a Taylor series expansion about Xh, using

multiple tables for the terms in the series.

– Use a form of interpolation based on one or two
tables.

– For reasonable table sizes, either approach is
limited to finding f(X) to about 20b of
precision.

Computer Architecture & Arithmetic Group 5 Stanford University

Polynomial approximations

• Scale the domain to improve precision.

• Selected coefficients to reduce either
maximum error or rms error.

• Apply Horner’s rule
– F(x)= cnxn + cn-1xn-1 +… +c1x + c0

– = (cn x + cn-1)x +…+ c1)x + c0

• m th degree polynomial requires m multiply
adds.

Computer Architecture & Arithmetic Group 6 Stanford University

Polynomial approximations

• Many different polynomial forms are
possible:
– Taylor series (not the best error term)

– Chebyshev Polynomial (best max error in
[-1,1))

– Interpolation: n point fit to n th (or lower)
degree polynomial. Tradeoff between order
(number of multiplies) and points (storage of
constants or domain points).

EE 486 Winter 02-03

M. J. Flynn 2

Computer Architecture & Arithmetic Group 7 Stanford University

Polynomial approximations

• For common elementary functions the IEEE
single precision result requires 3-5 terms;
double precision requires 6-10 terms. Less
if a table is used to start.

• This are some pre scaling overhead
operations, not included.

Computer Architecture & Arithmetic Group 8 Stanford University

Rational approximations

• Take the ratio of two polynomials, both of
lower degree than required of a polynomial
approximation for the same precision.

• Rm,n = Pm(x)/ Qn(x), where m,n are the
degrees of the polynomials.

• Rm,0 = Pm(x), the polynomial approximation.

• Select coefficients and order to give the
minimum maximum error.

Computer Architecture & Arithmetic Group 9 Stanford University

Numerical coprocessor support

• Hardware supported
rational approximation
really supports the
word size.

• Target mantissa is 67
bits, so as to support
the 80b IEEE
extended precision.

• Such coprocessors are
unusual.

Computer Architecture & Arithmetic Group 10 Stanford University

Pre scaling of operands

• To improve the
precision it’s
important to scale the
operands into a limited
range.

Computer Architecture & Arithmetic Group 11 Stanford University

Rational approximations (RA)

• To reduce the computational order many
approximations are of the form

• Pm,n = x Pm(x2)/ Qn(x2),

• Typically P4,4 is sufficient to give 67b
precision, altho the arc functions require P7,7

• The RA is computationally superior for
double or extended precision, for single
precision or less CORDIC is preferable.

Computer Architecture & Arithmetic Group 12 Stanford University

CORDIC

• A bit by bit algorithm that can compute all
the trig functions with a small amount of
hardware support.

• Basic algorithm gives sine, cosine and tan;
generalization gives arc and hyperbolic trig.

• Developed in ’59 by J. Volder

• Broadly used in calculators and sometimes
in processors.

EE 486 Winter 02-03

M. J. Flynn 3

Computer Architecture & Arithmetic Group 13 Stanford University

CORDIC

• x’=R cos(α+θ)

• y’=R sin(α+θ)

• R is unit length vector.

• By a series of rotations
by αi make Σαi = θ
and then determine x
and y and hence the
trig functions.

Computer Architecture & Arithmetic Group 14 Stanford University

CORDIC

• Expand x’=R cos(α+θ); y’=R sin(α+θ)

• x’= R[cos(θ)cos(α) - sin(θ)sin(α)]

• y’= R[sin(θ)cos(α) + cos(θ)sin(α)]

• x’= (R cos(α))cos(θ) – y sin(θ)

• Since x = R cos(α). And divide by cos(θ)

• x’/cos(θ) = x - y tan (θ), similarly

• y’/cos(θ) = y + x tan (θ),

Computer Architecture & Arithmetic Group 15 Stanford University

CORDIC

• tan (θ) ~ θ = α0 +/− α1 +/− α2 +/− … where
α ι = tan–1 2-i for α ι , choose + or – so as to

bring (θ +/− Σ αj) = zi to zero,

• Iterations are xi+1 = xi –/+ (yi 2-i), similarly

• yi+1 = yi +/- (xi 2 –i),

• zi+1 = zi –/+ (2-i), select sign so that zm = 0

Computer Architecture & Arithmetic Group 16 Stanford University

CORDIC

• Rotations by a are actually pseudo rotations
since for each iteration R is being
lengthened by 1/ cos(α). But since cos(α) =
cos(-α) , we can pre compute the product of
this lengthening as K= 1.646760…

Computer Architecture & Arithmetic Group 17 Stanford University

Converting tan (2-i) into degrees

0.10.20.40.91.83.67.11426
.6

45degrees

9876543210iteration

Computer Architecture & Arithmetic Group 18 Stanford University

An example, θ = 300

EE 486 Winter 02-03

M. J. Flynn 4

Computer Architecture & Arithmetic Group 19 Stanford University

CORDIC

• Produces all trig functions at a bit of
precision per iteration

• Each iteration takes 3 adds and a compare.

Computer Architecture & Arithmetic Group 20 Stanford University

CORDIC hardware support

Computer Architecture & Arithmetic Group 21 Stanford University

Using PPA arrays for function
evaluation (Schwartz)

• If a multiplier provides a solution to AxB=C
by adding pp’s then maybe we can use
something similar to back solve A op Q
=B (for divide) or S op S = A for sqrt.

• Solve any problem expressible as a
multiplication (even the trig functions)

• Goal: use a FP multiplier’s pp array to give
an HLF approximation in one multiply time.

Computer Architecture & Arithmetic Group 22 Stanford University

Computer Architecture & Arithmetic Group 23 Stanford University

PP arrays

• Back solving the reciprocal’s equations
involves both positive and negative terms.

• In the place of the (3,2) counter we can use
a more general structure called a Petritz
counter, where each of the 3 inputs can be
either positive or negative.

• But this requires special hardware for each
function.

Computer Architecture & Arithmetic Group 24 Stanford University

EE 486 Winter 02-03

M. J. Flynn 5

Computer Architecture & Arithmetic Group 25 Stanford University

Reduction rules for all positive pp’s

Computer Architecture & Arithmetic Group 26 Stanford University

HLF using PPA’s

Computer Architecture & Arithmetic Group 27 Stanford University

HLFs using PPA’s

Computer Architecture & Arithmetic Group 28 Stanford University

HLFs using PPA’s

Computer Architecture & Arithmetic Group 29 Stanford University

A 53 pp array provides a 17b
reciprocal

Computer Architecture & Arithmetic Group 30 Stanford University

Modifying the multiplier for HLFs

EE 486 Winter 02-03

M. J. Flynn 6

Computer Architecture & Arithmetic Group 31 Stanford University

Other HLFs

Computer Architecture & Arithmetic Group 32 Stanford University

Other HLFs

Computer Architecture & Arithmetic Group 33 Stanford University

PPA conclusions

