EE 486

Winter 02-03

EE 486 lecture 18: The Higher Level

The HLF: what are they?

* Also called the Elementary Functions

* Originally the familiar calculator type
functions, trig, log, exponential, n-th root,
€tc.

* With the advent of DSP, most any analytic
function representable as a series, a
polynomial or aratio of polynomials. E.g.
the incompl ete gamma function.

ez

Computer Architecture & Arithmetic Group 2 Stanford University X0,

Functions (HLFs).
M. J. Flynn
4ok
Computer Architecture & Arithmetic Group 1 Stanford University 000,
HLF implementations

* Usually a combination of hardware (esp. for

DSP) and software.
* Tradeoffs are precision, time and hardware

support cost.
* Threetypes of approaches

— Tables (interpolation or series based)

— Generalized (polynomial, rational or continued

fractions)
— Hardware (CORDIC or multiplier PPAS)

Computer Architecture & Arithmetic Group 3 Stanford University

Tables

» Aswith divide, we can
— UseaTaylor series expansion about X, using
multiple tables for thetermsin the series.
— Use aform of interpolation based on one or two
tables.

— For reasonable table sizes, either approach is
limited to finding f(X) to about 20b of
precision.

g0

Computer Architecture & Arithmetic Group 4 Stanford University

Polynomial approximations

» Scale the domain to improve precision.

* Selected coefficients to reduce either
maximum error or rms error.

» Apply Horner’srule
—F(X)= X"+ g XML+, +eX + ¢
— =X CX L)X G

 m th degree polynomial requires m multiply
adds.

Computer Architecture & Arithmetic Group 5 Stanford University

Polynomial approximations

» Many different polynomial forms are
possible:

— Taylor series (not the best error term)

— Chebyshev Polynomial (best max error in
[-11)

— Interpolation: n point fit to n th (or lower)
degree polynomial. Tradeoff between order
(number of multiplies) and points (storage of
constants or domain points).

g0

Computer Architecture & Arithmetic Group 6 Stanford University

M. J. Flynn

EE 486

Polynomial approximations

* For common elementary functions the |EEE
single precision result requires 3-5 terms;
double precision requires 6-10 terms. Less
if atableis used to start.

* This are some pre scaling overhead
operations, not included.

g0

Computer Architecture & Arithmetic Group 7 Stanford University

Winter 02-03

Rational approximations

» Taketheratio of two polynomials, both of
lower degree than required of a polynomial
approximation for the same precision.

* Rin = Pn(X)/ Q(X), wherem,n are the
degrees of the polynomials.

* R0 = Pn(X), the polynomial approximation.

* Sdlect coefficients and order to givethe
minimum maximum efror.

ez

Computer Architecture & Arithmetic Group 8 Stanford University X0,

Numerical coprocessor support

» Hardware supported
rational approximation
really supportsthe
word size.

» Target mantissais 67
bits, so as to support
the 80b IEEE
extended precision.

* Such coprocessors are
unusual.

Fie. 1. Block diasram of

Lk
Stanford University 00,

Computer Architecture & Arithmetic Group 9

Pre scaling of operands

» Toimprovethe

T

precision it's 1) For sin, cos, and tan, [a, b] = L—Z, 3’]
! [-
important to scale the 2 For In. la, b] = 75]
A .. § X 11
operandsinto a limited :' ;“ [o= -5)
) For tan™", [a, b] = (-1, 1].
range. 5) For 2, [a, b] = [n. 1
e Lok
r%‘ Computer Architecture & Arithmetic Group 10 Stanford University 000,

Rational approximations (RA)

* To reduce the computational order many
approximations are of the form

* Pin = XP03) Q%)

* Typicaly P, , is sufficient to give 67b
precision, altho the arc functions require P, ,

» The RA is computationally superior for
double or extended precision, for single
precision or less CORDIC is preferable.

e o
|%‘ Computer Architecture & Arithmetic Group 1 Stanford University X0,
T

M. J. Flynn

CORDIC

* A bit by bit algorithm that can compute all
the trig functions with a small amount of
hardware support.

* Basic agorithm gives sine, cosine and tan;
generalization gives arc and hyperbolic trig.

» Developed in’59 by J. Volder

* Broadly used in calculators and sometimes
in processors.

Lk
Stanford University Roge

&)
|%‘ Computer Architecture & Arithmetic Group 12
o

EE 486

Winter 02-03

CORDIC

* X’=R cos(0+8)

y’=R sin(a+0)

R is unit length vector.

* By aseries of rotations
by a; make>a; = 6
and then determine x
and y and hence the
trig functions.

Given 6 (in radians) find sin 0, cos 0, tan 6, etc

&)
|%‘ Computer Architecture & Arithmetic Group 13 Stanford University
o

CORDIC

Expand x’=R cos(0+8); y’=R sin(a+8)
x’= R[cos(B)cos(a) - sin(B)sin(a)]

y’= R[sin(B)cos(ar) + cos(B)sin(a)]

x'= (R cos(ar))cos(6) — y sin(6)

 Since x = R cos(a). And divide by cos(8)

» X’/cos(B) = x - y tan (8), similarly
* y’/cos(B) =y + x tan (0),
!_%; Computer Architecture & Arithmetic Group 14 Stanford University

CORDIC

tan (6) ~ 6 = o, +/- a, +/- a, +/— ... where
o, =tan"! 27 for a, , choose + or — so as to
bring (6 +/- Z) = 7 to zero,

e Iterations are x;,; = x; —/+ (y, 27), similarly

* Vi =Y H- (627,

e 2,,=z-/+(27), select signsothat z, =0

&)
|%‘ Computer Architecture & Arithmetic Group 15 Stanford University
o

CORDIC

* Rotations by a are actually pseudo rotations
since for each iteration R is being
lengthened by 1/ cos(a). But since cos(a) =
cos(-a) , we can pre compute the product of
this lengthening as K= 1.646760...

&)
|%‘ Computer Architecture & Arithmetic Group 16 Stanford University
o

Converting tan (27) into degrees

iteration |0 |1 |2 |3 |4 |5 |6 |7 |8 |9

degrees |45 (26 |14 (7.1|3.6|1.8|0.9|04 0.2 /0.1

&)
|%‘ Computer Architecture & Arithmetic Group 17 Stanford University
o

An example, 6 = 30°

TABLE 22.2
Choosing the signs of the rotation
angles to force z to 0

1 150 + 266 1.6
1.6 14.0 24
+1.1 18 = 0.7
[44
=3 Computer Architecture & Arithmetic Group 18 Stanford University

M. J. Flynn

EE 486

Winter 02-03

CORDIC

* Produces all trig functions at a bit of
precision per iteration
* Each iteration takes 3 adds and a compare.

Computer Architecture & Arithmetic Group 19 Stanford University

ez
XXX,

CORDIC hardware support

L» el
a5
e

Computer Architecture & Arithmetic Group 20 Stanford University

g0

Using PPA arrays for function
evaluation (Schwartz)

* If amultiplier provides a solution to AxB=C

by adding pp’s then maybe we can use

something similar to back solve A op Q

=B (for divide) or Sop S= A for sgrt.

Solve any problem expressible as a

multiplication (even the trig functions)

» Goal: usea FP multiplier’s pp array to give
an HLF approximation in one multiply time.

Computer Architecture & Arithmetic Group 21 Stanford University

ez
XXX,

0 example of derving & PP APPIOXITIATION o The Teciprocal fumction
is shown. First, the PPA of a multiplication (B * Q = 0.11--) is
back-solved in terms of the multiplier (Q)
0. 1 by by by bsy--|=B
X @ o g oas an -

T
‘ | G41b21 b3 31 baqa bsga - -
43[b2q3|baqs bagz bsgz -+
‘ q;"w;’w;"m/;’wp
q1jbaqn
90020 [b3q0/b4q0lb5q0| - - - I
ol 111 =10

bsquibaquibsqr -~

By choosing the quotient digits appropriately in a redundant notation

each column of the PPA forms an independent equation.
@

1+ bago

G2+ baqy + byqo

a3+ baga + bsqr + baqo

a1+ bags + bsg2 + bagy + bsqo

Computer Architecture & Arithmetic Group 22 Stanford University

g0

PP arrays

 Back solving the reciprocal’s equations
involves both positive and negative terms.

* Inthe place of the (3,2) counter we can use
amore general structure called a Petritz
counter, where each of the 3 inputs can be
either positive or negative.

* But this requires special hardware for each
function.

Computer Architecture & Arithmetic Group 23 Stanford University

ez
XXX,

1. Back solve
These boolean equations are solved to yield the following algebraic

equations for five digits of the quotient:

@ =1
G o= 1-bh
G o= 1—by

gy = 1—bo+2hoby — by — by
Q1 = 1= boby — by + 2boby — bs.

2. Put in PPA form
These equations are used to form the PPA of the approximation.

qo q G2 13 41
by —by
by 2y

by —by
b~y by —buly
1 1 1 1 1

24 Stanford University

g0

M. J. Flynn

EE 486

Reduction rules for all positive pp’s

3. Reduction Rules
1. Algebraic Expansion: M *a = 5k

#a, where M is any real
number, a and &; are Boolean, and 27 is implied by the column
weight. This step expands all coefficients in the array into their
binary components. An example is:

5a = 4da+a = (a, 0. a) by columns

N

Algebraic Reduction: 2a —a = a,

Boolean Reduction: a +b — ab = alb
or a+ab=alb,

4. Boolean Reduction: a — ab = a(1 — b) = ab,
5. Boolean Reduction: a + b — 2ab = a @ b;
Computer Architecture & Arithmetic Group 2 Stanford University

ez
XXX,

Winter 02-03

HLF using PPA’s

3. Apply reduction rules
Reduced PPA

9 q Ue] a3 s
bs

—(ba]by) —by

1 by (b]b) by —babs

4. Error Compensate to Improve Accuracy

9 i) E] a3] a5

= (bafbs)

1 by (bafbs) by —babs —bsbsbs

Computer Architecture & Arithmetic Group 2 Stanford University

g0

HLFsusing PPA’s

5. Complement Negative Elements and Subtract One

L) q P a3 L a5
Before : by
babsby
—(balby) —by

1 by (bafby) by —bsby —bybybs
After : by
Bobabs
baby by

1 b (bl b (Balbs) (bolbslBs)

-1) -1

Computer Architecture & Arithmetic Group 27 Stanford University

ez
XXX,

HLFsusing PPA’s

6. Reduce Constants

o an '¢] a3 A @
1
bs
Babsby
1 by by by 1
B Gl B BR) (i)
Computer Architecture & Arithmetic Group 28 Stanford University

g0

A 53 pp array providesa 17b
reciprocal

TOWS

18 columns

Computer Architecture & Arithmetic Group 29 Stanford University

ez
XXX,

M. J. Flynn

Modifying the multiplier for HLFs

A) Multipier Before Adaptation B) Adapted Mutiplier

Computer Architecture & Arithmetic Group 30 Stanford University

g0

EE 486 Winter 02-03

Other HLFs Other HLFs

W) = f(V(@))
For functions such as is
Lazymxy. .. = f(Luwy
1 =afb lab=a) W, V are polynomials with (0.1) coefficient.
r=1/b (r-b=1) If £ is expressable as a series expansion, then f(V/(z)) is also expressable

as a series.

-

the pp equations are straightforward,

Collect terms in v; to solve for z;.

In extending this technique to functions such as log, exponent, and the @)
trig functions. the rearrangement of the function into multiplicative form Some transcendental functions have analytic
is not obvious. It usually involves two substeps: derivatives:

1. Expressing the operands as polynomials (or other suitable analytic
functions)

2. Differentiating the function.

Use identities to find sinz, e”.

£
Computer Architecture & Arithmetic Group 32 Stanford University

£
Computer Architecture & Arithmetic Group 31 Stanford University

PPA conclusions

1. Almost all of the known elementary functions can be computed
(usually to within 12-20 bits of precision) in the same time it takes

to do one multiplication.

[

The hardware cost of this adaptation consists merely of a few
multiplex and logic gates which are input to certain of the partial
product array rows.

w

. The resulting adaptive multiplier/function unit can be dynamically
reconfigured in less than one cycle to perform any of the basic math
functions.

Computer Architecture & Arithmetic Group 33 Stanford University

M. J. Flynn 6

