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EE 486 lecture 18: The Higher Level 
Functions (HLFs).
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The HLF: what are they?

• Also called the Elementary Functions

• Originally the familiar calculator type 
functions, trig, log, exponential, n-th root, 
etc.

• With the advent of DSP, most any analytic 
function representable as a series, a 
polynomial or a ratio of polynomials. E.g. 
the incomplete gamma function. 
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HLF implementations

• Usually a combination of hardware (esp. for 
DSP) and software.

• Tradeoffs are precision, time and hardware 
support cost.

• Three types of approaches
– Tables (interpolation or series based)
– Generalized (polynomial, rational or continued 

fractions)
– Hardware (CORDIC or multiplier PPAs)

Computer Architecture & Arithmetic Group             4 Stanford University

Tables

• As with divide, we can
– Use a Taylor series expansion about Xh, using 

multiple tables for the terms in the series.

– Use a form of interpolation based on one or two 
tables.

– For reasonable table sizes, either approach is 
limited to finding f(X) to about 20b of 
precision.
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Polynomial approximations

• Scale the domain to improve precision.

• Selected coefficients to reduce either 
maximum error or rms error.

• Apply Horner’s rule 
– F(x)= cnxn + cn-1xn-1 +… +c1x + c0

– = (cn x + cn-1)x +…+ c1 )x + c0

• m th degree polynomial requires m multiply 
adds.
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Polynomial approximations

• Many different polynomial forms are 
possible:
– Taylor series (not the best error term)

– Chebyshev Polynomial (best max error in 
[-1,1))

– Interpolation: n point fit to n th (or lower) 
degree polynomial. Tradeoff between order 
(number of multiplies) and points (storage of 
constants or domain points). 
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Polynomial approximations

• For common elementary functions the IEEE 
single precision result requires 3-5 terms; 
double precision requires 6-10 terms. Less 
if a table is used to start.

• This are some pre scaling overhead 
operations, not included.

Computer Architecture & Arithmetic Group             8 Stanford University

Rational approximations

• Take the ratio of two polynomials, both of 
lower degree than required of a polynomial 
approximation for the same precision.

• Rm,n = Pm(x)/ Qn(x), where m,n are the 
degrees of the polynomials.

• Rm,0 = Pm(x), the polynomial approximation.

• Select coefficients and order to give the 
minimum maximum error.
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Numerical coprocessor support

• Hardware supported 
rational approximation 
really supports the 
word size.

• Target mantissa is 67 
bits, so as to support 
the 80b IEEE 
extended precision.

• Such coprocessors are 
unusual.
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Pre scaling of operands

• To improve the 
precision it’s 
important to scale the 
operands into a limited 
range.
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Rational approximations (RA)

• To reduce the computational order many 
approximations are of the form

• Pm,n = x Pm(x2)/ Qn(x2),

• Typically P4,4 is sufficient to give 67b 
precision, altho the arc functions require P7,7

• The RA is computationally superior for 
double or extended precision, for single 
precision or less CORDIC is preferable. 
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CORDIC

• A bit by bit algorithm that can compute all 
the trig functions with a small amount of 
hardware support.

• Basic algorithm gives sine, cosine and tan; 
generalization gives arc and hyperbolic trig.

• Developed in ’59 by J. Volder

• Broadly used in calculators and sometimes 
in processors.
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CORDIC

• x’=R cos(α+θ)

• y’=R sin(α+θ)

• R is unit length vector.

• By a series of rotations 
by αi make Σαi = θ
and then determine x 
and y and hence the 
trig functions.
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CORDIC

• Expand x’=R cos(α+θ); y’=R sin(α+θ)

• x’= R[cos(θ)cos(α) - sin(θ)sin(α)]

• y’= R[sin(θ)cos(α) + cos(θ)sin(α)]

• x’= (R cos(α))cos(θ) – y sin(θ)

• Since x = R cos(α). And divide by cos(θ)

• x’/cos(θ) = x - y tan (θ), similarly 

• y’/cos(θ) = y + x tan (θ),
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CORDIC

• tan (θ) ~ θ = α0 +/− α1 +/− α2 +/− … where 
α ι = tan–1 2-i for α ι , choose + or – so as to 

bring (θ +/− Σ αj ) = zi to zero, 

• Iterations are xi+1 = xi –/+ (yi 2-i), similarly 

• yi+1 = yi +/- (xi 2 –i),

• zi+1 = zi –/+ (2-i), select sign so that zm = 0
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CORDIC

• Rotations by a are actually pseudo rotations 
since for each iteration R is being 
lengthened by 1/ cos(α). But since cos(α) =
cos(-α) , we can pre compute the product of 
this lengthening as K= 1.646760…
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Converting tan (2-i) into degrees

0.10.20.40.91.83.67.11426
.6

45degrees

9876543210iteration
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An example, θ = 300
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CORDIC

• Produces all trig functions at a bit of 
precision per iteration

• Each iteration takes 3 adds and a compare.
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CORDIC hardware support
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Using PPA arrays for function 
evaluation (Schwartz)

• If a multiplier provides a solution to AxB=C 
by adding pp’s then maybe we can use 
something similar to  back solve  A op Q 
=B (for divide) or S op S = A for sqrt.

• Solve any problem expressible as a 
multiplication (even the trig functions)

• Goal: use a FP multiplier’s pp array to give 
an HLF approximation in one multiply time.
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PP arrays

• Back solving the reciprocal’s equations 
involves both positive and negative terms.

• In the place of the (3,2) counter we can use 
a more general structure called a Petritz 
counter, where each of the 3 inputs can be 
either positive or negative.

• But this requires special hardware for each 
function.
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Reduction rules for all positive pp’s
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HLF using PPA’s
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HLFs using PPA’s
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HLFs using PPA’s
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A 53 pp array provides a 17b 
reciprocal
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Modifying the multiplier for HLFs
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Other HLFs
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Other  HLFs
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PPA conclusions


