
EE 486 Winter 02-03

M. J. Flynn 1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 lecture 17: What’s new in
Divide.

M. J. Flynn

Computer Architecture & Arithmetic Group 2 Stanford University

Two approaches

• Bipartite tables ….very useful in short
precision divide, as with 3D graphics.

• Higher order series … for long precision
and extended precision.

• Note that both of these approaches are also
useful in implementing the various HLF
(higher level functions: trig, log, sqrt, etc)

Computer Architecture & Arithmetic Group 3 Stanford University

Bipartite tables

• Implement first 2 terms of Taylor series for 1/b in
2 tables.

• First term is an approximation, the second term
approximates the derivative, (1/b)’

• Then b

• First table index is b1+b2; second table index is
b1+b3 (b3 defines the derivative in the region of
b1).

b1 b2 b3

Computer Architecture & Arithmetic Group 4 Stanford University

Bipartite Tables to find (1/b)

• Based on first two terms of a Taylor series
expanded about the leading bits of b, called
bh. So

• Reciprocal =(1/bh) - ∆b(1/bh)2 +(∆b)2(1/bh)3

–note that all terms are positive since ∆b is
negative.

• Use two tables, one to find the first term
and one to find the second… error is
approx. by the third term.

Computer Architecture & Arithmetic Group 5 Stanford University

Bipartite Tables to find (1/b)

b1 b2 b3

Table 1

Table 2

adder
k bits

2k bits

k bits

3k bits out with 22k/3 +1 x3k

Computer Architecture & Arithmetic Group 6 Stanford University

Interpolation tables

• Similar approach is to use linear (or higher
order interpolation.

• Reciprocal = (1/bh) + bl[(1/bh)-(1/bh+ulp)]

• Now needs one table lookup then a multiply
–add.

EE 486 Winter 02-03

M. J. Flynn 2

Computer Architecture & Arithmetic Group 7 Stanford University

Interpolation tables

• Can be a more general
approach using a
multiply and an add.

• Needs a smaller table
2k/2 x (2k +3 or so).

Computer Architecture & Arithmetic Group 8 Stanford University

Higher order divide (a/b)

• As with the NR on the term exam, we can
use multiple terms (say t terms) of the
Taylor series as an iteration. So

• Reciprocal =(1/bh) - ∆b(1/bh)2 +(∆b)2(1/bh)3

• ∆b = |b – bh| = bl, all terms positive

• So look up (1/bh), (1/bh)2 , (1/bh)3; compute
∆b and (∆b)2

Computer Architecture & Arithmetic Group 9 Stanford University

Higher order divide: #1

• Now compute new dividend, a’ as

• a’ = a – ah x (1/bh) x b and quotient

• q’ = q + ah’ x (1/bh) (shifted)

• Can use redundant, s +c form to speed
things up.

• Precision (m bit lookup) m-2 bits per
iteration

Computer Architecture & Arithmetic Group 10 Stanford University

Higher order divide: #2

• B= (1/bh) - ∆b(1/bh)2 +(∆b)2(1/bh)3...;t terms

• Look up m bits of (1/bh) , (1/bh)2 , (1/bh)3

• Now compute new dividend, a’ as

• a’ = a – ah x B x b and quotient

• q’ = q + ah’ x B (shifted)

• Precision (m bit lookup) mt - t-1 bits per
iteration

Computer Architecture & Arithmetic Group 11 Stanford University

Higher order divide: #3

• Let b= bH + bL

• Factor 1/ bH – bL /bH
2 +(bL)2(1/ bH)3...;

• a/(bH + bL) = a/ bH (1- bL /bH + bL
2/ bH

2)

• First 2 terms a/b= a (bH - bL)/ bH
2

• Look up bH
2

• Precision (m bit lookup) 2m - 3 bits per
iteration… can be 2m with compensation

Computer Architecture & Arithmetic Group 12 Stanford University

EE 486 Winter 02-03

M. J. Flynn 3

Computer Architecture & Arithmetic Group 13 Stanford University

Liddicoat’s General Purpose Divide
and Elementary Function(HLF) Unit
• Higher order series expansion can be used for really

high-performance (low latency) divide and HLF units.

• Up till now we mostly used 1st-order iteration with
quadratic convergence.

• Higher-order iterations converge more rapidly BUT have
hardware requirements.

• The parallel computation of the square, cube, and
powers of an operand reduce the latency of the higher-
order iteration.

Computer Architecture & Arithmetic Group 14 Stanford University

Reciprocal and the Elementary Functions
Represented by Taylor Series Expansions

eexx = 1 + x + = 1 + x + 11//2 2 xx22 + + 11//6 6 xx33 + + 11//24 24 xx4 4 + ...+ ...

lnln(x+1) = x (x+1) = x -- 11//2 2 xx22 + + 11//3 3 xx33 -- 11//4 4 xx44 + ...+ ...

sin(x) = x sin(x) = x -- 11//6 6 xx33 + + 11//120 120 xx55 --

coscos(x) = 1 (x) = 1 -- 11//2 2 xx22 + + 11//24 24 xx44 --

arctanarctan(x) = x (x) = x -- 11//3 3 xx33 + + 11//5 5 xx55 --

1/ b = 1 1/ b = 1 -- 11//2 2 x + x + 33//8 8 xx22 -- 55//16 16 xx33 + + 3535//128 128 xx4 4 --

b = 1 + b = 1 + 11//2 2 x x -- 11//88xx22 + + 11//16 16 xx33 -- 1515//128 128 xx4 4 + ...+ ...

1/b = 1 1/b = 1 -- x + xx + x22 -- xx33 + x+ x4 4 --

Computer Architecture & Arithmetic Group 15 Stanford University

Reciprocal, Square Root, and
Inverse Square Root as Series Expansion

Prescaled by d=(1-bX0) with X0≈1/b, Y0≈1/ b, and Z0≈ b

• Reciprocal

1/b = X0(1 + d + d2 + d3 + d4 + ...)

• Square Root
b = Y0(1 - 1/2d - 1/8d2 - 1/16d3 - 15/128d4 -...)

• Inverse Square Root

1/ b = Z0(1 + 1/2 d + 3/8 d2 + 5/16 d3 + 35/128 d4 + ...)

Computer Architecture & Arithmetic Group 16 Stanford University

Architecture for the General Purpose
Arithmetic Unit

• The powers of (1-bX0) are
computed in parallel.

• Latency is approximately:

t = t look up table + 3 t sub-unit

Computer Architecture & Arithmetic Group 17 Stanford University

The Parallel Squaring Unit for (1-bX0)2

**

** jiijji aaaaaa 2=+

2a

Computer Architecture & Arithmetic Group 18 Stanford University

The Parallel Cubing Unit for (1-bX0)3

EE 486 Winter 02-03

M. J. Flynn 4

Computer Architecture & Arithmetic Group 19 Stanford University

Hardware Structure for
the Parallel Cubing Unit

Computer Architecture & Arithmetic Group 20 Stanford University

Truncated PPA for 24-bit Cube

• The required cube PPA is
less than 10% of a single
24-bit direct multiply !

• PPA trunc height = 12 bits!

• PPA trunc width = 8 bits !

Necessary PPA ColumnsNecessary PPA Columns

Computer Architecture & Arithmetic Group 21 Stanford University

Square PPA Column Truncation

• The divide unit was
simulated for various
squaring and cubing unit
truncations.

• There is a knee in the
curve when the squaring
unit is truncated by 29
columns.

• E < 0.5 ulp
with the cube PPAtrunc= 60
and square PPAtrunc = 31.

Computer Architecture & Arithmetic Group 22 Stanford University

Truncated Square PPA

• The required squaring unit
PPA is less than 15% of a
single 24-bit direct multiply!

• PPA trunc height = 9 bits!

• PPA trunc width = 16 bits!

Necessary PPA ColumnsNecessary PPA Columns

Computer Architecture & Arithmetic Group 23 Stanford University

Final Divide Sub-unit Precision

Computer Architecture & Arithmetic Group 24 Stanford University

Divide and HLF: net

• Can be done in a LUT + (1-2) MPY+ADD.

• Yes, a 4 cycle divide is possible.

• And the hardware cost is probably no more
than two multipliers and an 3 way adder and
(of course) a LUT.

