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EE 486 lecture 17: What’s new in
Divide.

M. J. Flynn
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Two approaches

* Bipartitetables ....very useful in short
precision divide, as with 3D graphics.

* Higher order series ... for long precision
and extended precision.

* Notethat both of these approaches are also
useful in implementing the various HLF
(higher level functions: trig, log, sqrt, etc)
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Bipartite tables

Implement first 2 terms of Taylor seriesfor /b in
2 tables.

First term is an approximation, the second term
approximates the derivative, (1/b)’

Thenb

First table index is b1+b2; second table index is
b1+b3 (b3 defines the derivative in the region of
bl).
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Bipartite Tables to find (1/b)

* Based on first two terms of a Taylor series
expanded about the leading bits of b, called
b,. So

¢ Reciprocal =(1/b,) - Ab(1/b,)? +(Ab)2(1/b,)3
—note that all terms are positive since Ab is
negative.

» Usetwo tables, oneto find the first term
and oneto find the second... error is
approx. by the third term.

Computer Architecture & Arithmetic Group 4 Stanford University

ez
XXX,

Bipartite Tables to find (1/b)

k bits k bits

3k bits out with 22¢3+1 x3k
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Interpolation tables

* Similar approach isto use linear (or higher
order interpolation.

* Reciprocal = (/b,) + b[(V/b,)-(1/b,+ulp)]

» Now needs one table lookup then a multiply
—add.
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Interpolation tables Higher order divide (a/b)
+ Can beamore general » Aswith the NR on the term exam, we can
approach using a use multiple terms (say t terms) of the

multiply and an add.

* Needsasmaller table
2K2 % (2k +3 or s0).

Taylor series as an iteration. So
* Reciprocal =(1/b,) - Ab(1/b,)? +(Ab)2(1/b,)3
* Ab=|b-Db,|=b, al terms positive
» Solook up (1/b,), (1/b.)?, (I/b,)3; compute

Ab and (Ab)?
SETRE oy
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Higher order divide: #1 Higher order divide: #2
« Now compute new dividend, & as » B= (1/b,) - Ab(L/b,)? +(Ab)X(1/b,)3...;t terms
* @ =a-a,x (1b,) x b and quotient  Look up mbitsof (1/b,) , (1/b,)?, (Ub,)?
* q =qg+a, x(1b,) (shifted) » Now compute new dividend, & as
 Can useredundant, s +c form to speed * & =a-3a,xBxband quatient
things up. * g =q+a, xB (shifted)
* Precision (m bit lookup) m-2 bits per « Precision (m bit lookup) mt - t-1 bits per
iteration iteration
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Higher order divide: #3
* Letb=Db,+b Sreremax] [Gpommav]
e Factor 1/ b, - b /b2 +(b)3(L by)3...; o 7‘
« al(b, +b)=ab, (1- b, /b, + b/ b2 ) | [
« First 2 termsalb=a (b, - b, )/ b2 by
* Look up b, B
* Precision (m bit lookup) 2m - 3 bits per R
iteration. .. can be 2m with compensation
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Liddicoat’s General Purpose Divide
and Elementary Function(HLF) Unit

« Higher order series expansion can be used for really
high-performance (low latency) divide and HLF units.

« Up till now we mostly used 15-order iteration with
quadratic convergence.

« Higher-order iterations converge more rapidly BUT have
hardware requirements.

* Theparallel computation of the square, cube, and
powers of an operand reduce the latency of the higher-
order iteration.
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Reciprocal and the Elementary Functions
Represented by Taylor Series Expansions

Ub = 1-x+x2-x3+x4- ..

JO = 1+ Yyx - Ygx® + Y133 - 5] 5o x4 + ..

U= 1-UyX +3/gx2 - 516 X3 + 35 g X4 - ...

€& = 1+ X+ Y2+ Y X3+ Yp XA +

IN(x+1) =X - Y, X2 +15x8 -1, x4+ ...

COS(X) = 1- 1,2 + Yy x4 - ..

sin(X) =X - Ygx3 + Y 50%5 - ...

arctan(x) = x - Y3x3 + Y5 x5 - ...

ez
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Reciprocal, Square Root, and
Inverse Square Root as Series Expansion
Prescaled by d=(1-bX;) with X,=1/b, Y =1/Vb, and Z;=/b

* Reciprocal
Ub=Xy(1+d+d2+d+d*+..)

* Square Root
‘jo_: Y o(1 - 2/2d - 1182 - /1603 15/1280-...)

¢ Inverse Squar e Root

hj/b_: Zo(L+v2d+38d2+516d3+35m28 d + )

Architecture for the General Purpose
Arithmetic Unit

LUT (1)
X
) x (it 1)

« Thepowersof (1-bX,) are
computed in parallel.

« Latency is approximately:

t=t +3t = 1
look wp teble sb-unit L - e, cos

g0
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The Parallel Squaring Unit for (1-bX,)?
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The Parallel Cubing Unit for (1-bX,)3
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Hardware Structure for
the Parallel Cubing Unit

3X term Partial Product Array
(Surnming Tree)

1X terms

cs

3X Multiple and Sum

(55.4) Counter Stage
cs
CPA
a3
FUTE
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Truncated PPA for 24-hit Cube

The required cube PPA is
lessthan 10% of asinge
24-bit direct multiply !

PPA ;,nc height = 12 bits!

PPA 4y ync Width = 8 bits!
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Square PPA Column Truncation

« Thedivide unit was 12

. . Cube PPA Truncated to 59 Columns
simulated for various

o~ Cube PPA Truncated to 60 Columns

Truncated Square PPA

The required squaring unit
PPA islessthan 15% of a
single 24-bit direct multiply!

PPA ;¢ height = 9 bits!

PPA ;e Width = 16 bits!

Necessary PPA Columns)"

wua”ng and cub| ng Un|t _E 1 Cube PPA Truncated to 61 Columns ||
S
truncations. 8
5 os
) ) £
« Thereisakneeinthe 2 oo
curve when the squaring 3
L =
unit istruncated by 29 7 04
columns. g
g 02
+ E<O05ulp &
with th PPA, .= % 25 30 35
antd gtqfar?gg A "im3160 Squaring Unit PPA Columns Truncated
trunc o
Lob
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3¢ Order Reciprocal Approximation
1 =Xo* (\1 +(1-bX) + (1-bXo) + (1-bXo) )
8
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Divide and HLF: net
e CanbedoneinalLUT + (1-2) MPY+ADD.
* Yes, a4 cycledivideis possible.
 And the hardware cost is probably no more
than two multipliers and an 3 way adder and
(of course) aLUT.
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