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EE 486 lecture 15: What’s new in 
Add and Multiply.
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Add

• Integer adders are now mostly available as 
macro cells. The best of which are 
parameterizable and carefully optimized.

• In optimizing for various area-time design 
points, the regularity of the design is not a 
consideration. The best designs are hybrid 
with variable length segments which 
attempt to equalize the delay across all 
paths.  
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Integrated Multiply Add

• By making the final CPA of the multiplier a 
3 input adder, we can provide (AxB + C) in 
the same time as the product. This is now 
generally used in fp arithmetic, as the FMA 
instruction.

• This final CPA is also an example of the 
kind of optimization that’s possible when 
the bit position arrival time is known.
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CPA optimization

• In multipliers (as in 
some other situations) 
if the bit arrival time is 
known a more area 
time effective 
implementation is 
possible. Ripple at the 
low end, carry select 
on the most significant 
bits.

Bit arrival time at CPA, 
IEEE double precision
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Multiply

• Redundant Booth

• The effect of wires in determining the 
optimal implementation.
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Non-Booth and pp selection 
overhead

PP selection is a single AND
gate of the shifted multiplicand

16x16b multiply
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Booth 2 and selection HW

Now selection 
Requires 5 gate delays

16x16b multiply
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Booth 3 has similar selection 
overhead and requires the hard pp

Again selection requires
about 5 gate delays

But now we first need to
form the +/-3 multiple
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Eliminating the hard multiple

• We can eliminate the 
hard addition by 
simply entering both 
m and 2m instead of 
3m.

• The multiple is in fully 
redundant form.

• But this doesn’t 
reduce the height of 
the pp tree.

16x16b multiply
with Booth 3 fully
redundant hard pp
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Partially Redundant Booth 3

• Suppose we overlap 
the delay in selection 
of the multiple with a 
partial or “digit” add 
of the hard multiple.

• This leaves us with a 
full pp plus a sparse 
pp for each hard 
multiple.
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Partially redundant Booth 3: “digit”
size

• The sparse pp should 
not align to increase 
the over pp height.

• The longer the add, 
the sparser the pp and 
the lower the overall 
pp height.
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Partially redundant Booth 3: bias

• Note that the (–3) multiple will have sparse 
0’s in a pp of all 1’s.

• We bias the pp’s so that they’re all positive.

• Then collect the biases as a single overall 
compensation constant.
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Wires play a big role in some 
algorithms

W=10 W=20

Delay for IEEE double precision, Booth 2
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But wires play a much bigger role 
for W < 10

• For W <10 probably 
Booth with a higher 
order array is best.

• Once W > 10 or so, 
the problem for 
multiplier implement-
ation is which tree 
algorithm is optimum.
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Multiply and feature sizes

• Smaller feature sizes create wire dominated 
implementations

• Wires, not gates, determine the delay

• Optimality of an implementation depends 
on the effect of wires, hence feature size
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At 0.1 micron wires represent 70% 
of multiplier delay

• This could be much 
larger if we used faster 
dynamic logic.

• Results are for IEEE 
double precision with 
W =20.
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The effect of wires on particular 
encodings

• The less the encoding 
of the multiplier, the 
greater the effect of 
wires on delay.

• Each algorithm is 
plotted relative to 
itself (w. no wires)
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Overall multiplier conclusions

• Booth 2 seemed the 
best encoding for 
speed, Booth 3 for 
area.

• “Compiled” Wallace 
layout using (3,2)’s 
proved better than a 
structured binary tree.


