EE 486

EE 486 lecture 15: What’s new in
Add and Multiply.

M. J. Flynn

g0

Computer Architecture & Arithmetic Group 1 Stanford University

Winter 00-01

Add

* Integer adders are now mostly available as
macro cells. The best of which are
parameterizable and carefully optimized.

* Inoptimizing for various area-time design
points, the regularity of the design is not a
consideration. The best designs are hybrid
with variable length segments which
attempt to equalize the delay across al
paths.

Computer Architecture & Arithmetic Group 2 Stanford University

ez
XXX,

Integrated Multiply Add

» By making thefinal CPA of the multiplier a
3 input adder, we can provide (AxB + C) in
the sametime as the product. Thisis now
generally used in fp arithmetic, asthe FMA
instruction.

 Thisfinal CPA isalso an example of the
kind of optimization that’s possible when
the bit position arrival timeis known.

g0

Computer Architecture & Arithmetic Group 3 Stanford University

CPA optimization

* Inmultipliers (asin
some other situations)
if the bit arrival timeis
known amore area
time effective
implementation is
possible. Ripple &t the
low end, carry select

on the most significant
bits.

Bit arrival time at CPA,
|EEE double precision

Stanford University

Computer Architecture & Arithmetic Group 4

ez

Multiply

» Redundant Booth

* The effect of wiresin determining the
optimal implementation.

Computer Architecture & Arithmetic Group 5 Stanford University X0,

Non-Booth and pp selection
overhead

PP selection isasingle AND

‘‘‘‘‘‘‘ = gate of the shifted multiplicand
16x16b muitiply UO00UU0U000000U00 ||
o
Computer Architecture & Arithmetic Group 6 Stanford University X0,

M. J. Flynn

EE 486

Winter 00-01

Booth 2 and selection HW
JFRmenenn : LLL{ -
‘ Now selection
Requires 5 gate delays
e RN
TG J-
v
,,,,,,,,, o
7 Stanford University 000,

Booth 3 has smilar selection
overhead and requires the hard pp

Again selection requires
about 5 gate delays

But now we first need to
form the +/-3 multiple

FUTE
8 Stanford University X0,

Eliminating the hard multiple

* We can eiminate the
hard addition by
simply entering both
m and 2m instead of
3m.

Themultipleisin fully
redundant form.

But this doesn’t
reduce the height of
the pp tree.

16x16b multiply
with Booth 3 fully
redundant hard pp

Stanford University 00,

Computer Architecture & Arithmetic Group 9

Partially Redundant Booth 3

* Suppose we overlap Sl S
thedelayinselection o-ooo--o...o.o-oo«.w}z‘”
of the multiple with a ‘
partial or “digit” add LI LI
o the hard multiple.

+ Thisleavesuswitha ~ °"* “7 % > * “”*
full pp plus asparse "
ppforeamhad ‘ o-oo-o-;f..;..o-o
multiple. ity e o

!_%; Computer Architecture & Arithmetic Group 10 Stanford University w

Partially redundant Booth 3: “digit”
size

* The sparse pp should
not align to increase
the over pp height.

* Thelonger the add,
the sparser the pp and
the lower the overall
pp height.

Stanford University Roged

&)
|%‘ Computer Architecture & Arithmetic Group 1
o

Partially redundant Booth 3: bias

* Notethat the (-3) multiple will have sparse
O'sinappofall 1’s.
» Webias the pp’s so that they’re all positive.

* Then collect the biases as a single overall
compensation constant.

Lk
Stanford University Roge

&)
|%‘ Computer Architecture & Arithmetic Group 12
o

M. J. Flynn

EE 486

Delay (ns)

80|

Wires play a big role in some
algorithms

W=10

100

53

Double Wigheroner Binary

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

603
0 357 s
517
40
20 K E : -
0.0
4 Bilinced Overtumed
Stircase

Winter 00-01

But wires play a much bigger role
for W< 10

 For W <10 probably
Booth with a higher
order array is best.

* OnceW > 10 or so,
the problem for L9
multiplier implement-
ation iswhich tree
algorithm is optimum.

Stanford University

&)
|%‘ Computer Architecture & Arithmetic Group 14
o

At 0.1 micron wires represent 70%
of multiplier delay

* This could be much
larger if we used faster
dynamic logic.

* Resultsarefor IEEE i
double precision with '
W =20.

&)
|%‘ Computer Architecture & Arithmetic Group 16 Stanford University
o

ez
XXX,

!_%; Computer Architecture & Arithmetic Group 13 Stanford University m
Multiply and feature sizes
» Smaller feature sizes create wire dominated
implementations
» Wires, not gates, determine the delay
* Optimality of an implementation depends
on the effect of wires, hence feature size
!_%; Computer Architecture & Arithmetic Group 15 Stanford University w
The effect of wires on particular
encodings
» Thelessthe encoding
of the multiplier, the
greater the effect of
wires on delay.
» Eachalgorithmis
plotted relative to
itself (w. no wires)
!_%; Computer Architecture & Arithmetic Group 17 Stanford University w

M. J. Flynn

Overall multiplier conclusions

* Booth 2 seemed the
best encoding for
speed, Booth 3 for
area.

* “Compiled” Wallace
layout using (3,2)’s
proved better than a
structured binary tree.

Stanford University

&)
|%‘ Computer Architecture & Arithmetic Group 18
o

