
EE 486 Winter 00-01

M. J. Flynn 1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 lecture 15: What’s new in
Add and Multiply.

M. J. Flynn

Computer Architecture & Arithmetic Group 2 Stanford University

Add

• Integer adders are now mostly available as
macro cells. The best of which are
parameterizable and carefully optimized.

• In optimizing for various area-time design
points, the regularity of the design is not a
consideration. The best designs are hybrid
with variable length segments which
attempt to equalize the delay across all
paths.

Computer Architecture & Arithmetic Group 3 Stanford University

Integrated Multiply Add

• By making the final CPA of the multiplier a
3 input adder, we can provide (AxB + C) in
the same time as the product. This is now
generally used in fp arithmetic, as the FMA
instruction.

• This final CPA is also an example of the
kind of optimization that’s possible when
the bit position arrival time is known.

Computer Architecture & Arithmetic Group 4 Stanford University

CPA optimization

• In multipliers (as in
some other situations)
if the bit arrival time is
known a more area
time effective
implementation is
possible. Ripple at the
low end, carry select
on the most significant
bits.

Bit arrival time at CPA,
IEEE double precision

Computer Architecture & Arithmetic Group 5 Stanford University

Multiply

• Redundant Booth

• The effect of wires in determining the
optimal implementation.

Computer Architecture & Arithmetic Group 6 Stanford University

Non-Booth and pp selection
overhead

PP selection is a single AND
gate of the shifted multiplicand

16x16b multiply

EE 486 Winter 00-01

M. J. Flynn 2

Computer Architecture & Arithmetic Group 7 Stanford University

Booth 2 and selection HW

Now selection
Requires 5 gate delays

16x16b multiply

Computer Architecture & Arithmetic Group 8 Stanford University

Booth 3 has similar selection
overhead and requires the hard pp

Again selection requires
about 5 gate delays

But now we first need to
form the +/-3 multiple

Computer Architecture & Arithmetic Group 9 Stanford University

Eliminating the hard multiple

• We can eliminate the
hard addition by
simply entering both
m and 2m instead of
3m.

• The multiple is in fully
redundant form.

• But this doesn’t
reduce the height of
the pp tree.

16x16b multiply
with Booth 3 fully
redundant hard pp

Computer Architecture & Arithmetic Group 10 Stanford University

Partially Redundant Booth 3

• Suppose we overlap
the delay in selection
of the multiple with a
partial or “digit” add
of the hard multiple.

• This leaves us with a
full pp plus a sparse
pp for each hard
multiple.

Computer Architecture & Arithmetic Group 11 Stanford University

Partially redundant Booth 3: “digit”
size

• The sparse pp should
not align to increase
the over pp height.

• The longer the add,
the sparser the pp and
the lower the overall
pp height.

Computer Architecture & Arithmetic Group 12 Stanford University

Partially redundant Booth 3: bias

• Note that the (–3) multiple will have sparse
0’s in a pp of all 1’s.

• We bias the pp’s so that they’re all positive.

• Then collect the biases as a single overall
compensation constant.

EE 486 Winter 00-01

M. J. Flynn 3

Computer Architecture & Arithmetic Group 13 Stanford University

Wires play a big role in some
algorithms

W=10 W=20

Delay for IEEE double precision, Booth 2

Computer Architecture & Arithmetic Group 14 Stanford University

But wires play a much bigger role
for W < 10

• For W <10 probably
Booth with a higher
order array is best.

• Once W > 10 or so,
the problem for
multiplier implement-
ation is which tree
algorithm is optimum.

Computer Architecture & Arithmetic Group 15 Stanford University

Multiply and feature sizes

• Smaller feature sizes create wire dominated
implementations

• Wires, not gates, determine the delay

• Optimality of an implementation depends
on the effect of wires, hence feature size

Computer Architecture & Arithmetic Group 16 Stanford University

At 0.1 micron wires represent 70%
of multiplier delay

• This could be much
larger if we used faster
dynamic logic.

• Results are for IEEE
double precision with
W =20.

Computer Architecture & Arithmetic Group 17 Stanford University

The effect of wires on particular
encodings

• The less the encoding
of the multiplier, the
greater the effect of
wires on delay.

• Each algorithm is
plotted relative to
itself (w. no wires)

Computer Architecture & Arithmetic Group 18 Stanford University

Overall multiplier conclusions

• Booth 2 seemed the
best encoding for
speed, Booth 3 for
area.

• “Compiled” Wallace
layout using (3,2)’s
proved better than a
structured binary tree.

