Winter 02-03

Al: Baseline FADD

Form exp differencé
Shift smaller char by
Characteristic add/sub
Complement the result

¢ Post shift to
renormalize
¢ round
‘%} Computer Architecture & Arithmetic Group 2 Stanford University (o)
L7 TP

%‘ Computer Architecture & Arithmetic Group 4
[0

Baseline FADD

Needs 3 Adds
And 2 long shifts

Plus some selection
and short shift
overhead.

kol

EE 486
EE 486 lecture 14: Floating Point
Considerations (ADD)
M. J. Flynn
‘r%; Computer Architecture & Arithmetic Group 1 Stanford University
Al: Baseline | |
details S —
‘r%; Computer Architecture & Arithmetic Group 3 Stanford University
FP ADD improvements
¥ A2: the 2-path FP adder
¥ A3: the integrated round using compound
adders
¥ Variable latency add
‘r%; Computer Architecture & Arithmetic Group 5 Stanford University

%‘ Computer Architecture & Arithmetic Group 6
[0

A2: the 2 path FP Adder

The two long shifts can’t occur with the same
operands

A long preshift occurs when one operand is much
smaller than the other.

A long postshift occurs on subtract when the
operand value are close.

So make two paths, a“far path” and a “close
path”.

(M. Farmwald ' 81)

kol

M. J. Flynn

EE 486

Winter 02-03

A2: Thetwo path adder

FAR CLOSE

— .t
L iT‘lJ

&
‘%‘ Computer Architecture & Arithmetic Group 7 Stanford University
T

T

A2: Two Path and rounding

¢ Note that rounding can only occur in the far
path or with no shift or one shift in the close
path.

¢ Inthe close path, when alarge postshift
occurs then the result needs no round, as
LGS = 000.

Stanford University ()

&
‘%‘ Computer Architecture & Arithmetic Group 8
T

T

A3: Integrated round

¢ Inthefar path (or close and no big
postshift) we can use a compound adder to
produce sum and sum + 1. Then select the
true result.

« Need to avoid the delay due to the rounding

step.

kol

&
‘%‘ Computer Architecture & Arithmetic Group 9
e

A3: Compound Adders

¢ Produces sum and sum

A

+1 l

¢ Uses same basic adder

at the bit level (s,c,p,0)
but needs a new look

l—m

ahead structure.
S S+1
‘%} Computer Architecture & Arithmetic Group 10 Stanford University
L7 TP

A3: ADD/SUB rounding

Problem: create

Add/Sub - shifting gc;t;é)(;\ tab(li) |
vy on an
(A)Before N'L' GRS corrections based

on shift amount
and sign hits that

(B) After LGS

(C) Find L-- : c
result in (C) asif
it were
determined by
(B).
‘%i Computer Architecture & Arithmetic Group 11 Stanford University
L7 TP

A3: Subtract/Add post shifts

< Subtract Cases: Add Cases:
<l lea-egP1 ILAll| &, - &
< () no shift (a) o shift
¢« (b)leftsnift by 1. (b) oneright shift
<l lea-egl<1
< (8 no shift:
positive result
<« (b) no shift:

negative result
<« (c) leftshift by >=

kol

&
‘%‘ Computer Architecture & Arithmetic Group 12
e

M. J. Flynn

EE 486

Rounding Cases, Subtract

¢ Rounding is not need when we have
subtract in the close path and
— theresult is negative
— theresult is positive and aleft shift is required
¢ An unadjusted (no shift) round occursin
cases| (@) and 11 (a)

¢ Incasell (b) we have rounded inthe L’
rather than G’ bit but it has the same effect.

Winter 02-03

-

Rounding cases, Add

¢ Incasel (@), the unadjusted (no shift)
rounds occurs.

¢ Incasel (b), we have oneright shift. Here
we must ook at the individual LGs
combinations to select the correct outcome.

%‘ Computer Architecture & Arithmetic Group 14

kol

7%
B2 computer Architecture & Arithmetic Group 13 Stanford University fiuaad
r:\ T
able 2.1 T acrion: Addiion with one right <4t cireld actions (') ndicate et
Befor one ight st At
Corect
N L' G R4S Action L G s action (C.)
0 0 0 o o o 00 o
o 0 0 1 o oo 1 o
o 0 1 0 o o 01 o
0 o 1 1 1 0 0 1 0) late sele
A3: actions o 10 0 o o 1o o
o 10 00 111 e
Add. RN T e e e
1 01 1 1 1 0 1 1 1
1o 0 0 o 100 o
1o o0 o 101 o
1o 1o o 101 o
1 0o 1 1 1 10 1 0] late select
110 o 0T 1 0 1) eseea
1 1 o0 1 0 1 1 1 1) late select
[[T T S
L1 [T
cton based on unnomalzed resut
&3 (o
3 Computer Achitectue & Arthmetic Group 15 Stanford University
LT TP

T

RP and RM modes

¢ These modesrequire an S+2 aswell as S
and S+1.

* Needs another row of half adders, or an
extra cycle when using these modes.

%‘ Computer Architecture & Arithmetic Group 16

kol

A3: Two path with integrated round

——

&
%‘ Computer Architecture & Arithmetic Group 17 Stanford University
e T

M. J. Flynn

%‘ Computer Architecture & Arithmetic Group 18
[0

A4: Variable Latency FADD

¢ Depending on operand values and what
actions are needed we can provide aresult
in either one or two or three cycles.

¢ Value of this approach is limited by
— Frequency of 1 and 2 ~ results

— Scheduling difficulties in the instruction issuing
mechanism.

— Collisions in pipelined implementations.

kol

EE 486 Winter 02-03

VL Add: 2& 3~ VL Add: 2& 3cycle

““““ ¢ The far path requires the full exponent add,
making it the slower path.

¢ So start the close path early (speculatively)
and completein 2~. If the true path was the
far path, we'll know this at the end of the

first cycle.
L%i Computer Architecture & Arithmetic Group 19 Stanford University L%i Computer Architecture & Arithmetic Group 20 Stanford University
VL Add: 1,2 & 3cycle
¢ Some operations may require neither a
preshift nor around.
¢ Even some one bit shifts might be included
in asingle cycle ADD/SUB
 Performance results depends on how
aggressive we are in alocating actions to
thefirst cycle.
L%‘ Computer Architecture & Arithmetic Group 21 Stanford University L%i Computer Architecture & Arithmetic Group 22 Stanford University
Exponent differences and shifts VL Performance
i
ure 2.12: Performance Summary of Proposed Techniques
L%i Computer Architecture & Arithmetic Group 23 Stanford University L%i Computer Architecture & Arithmetic Group 24 Stanford University

M. J. Flynn 4

