Winter 02-03

Al: Baseline FADD

Form exp differencé
Shift smaller char by
Characteristic add/sub
Complement the result

¢ Post shift to
renormalize
¢ round
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Baseline FADD

Needs 3 Adds
And 2 long shifts

Plus some selection
and short shift
overhead.
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FP ADD improvements
¥ A2: the 2-path FP adder
¥ A3: the integrated round using compound
adders
¥ Variable latency add
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A2: the 2 path FP Adder

The two long shifts can’t occur with the same
operands

A long preshift occurs when one operand is much
smaller than the other.

A long postshift occurs on subtract when the
operand value are close.

So make two paths, a“far path” and a “close
path”.

(M. Farmwald ' 81)
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A2: Thetwo path adder
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A2: Two Path and rounding

¢ Note that rounding can only occur in the far
path or with no shift or one shift in the close
path.

¢ Inthe close path, when alarge postshift
occurs then the result needs no round, as
LGS = 000.
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A3: Integrated round

¢ Inthefar path (or close and no big
postshift) we can use a compound adder to
produce sum and sum + 1. Then select the
true result.

« Need to avoid the delay due to the rounding

step.
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A3: Compound Adders

¢ Produces sum and sum

A

+1 l

¢ Uses same basic adder

at the bit level (s,c,p,0)
but needs a new look

l—m

ahead structure.
S S+1
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A3: ADD/SUB rounding

Problem: create

Add/Sub - shifting gc;t;é)(;\ tab(li) |
vy on an
(A)Before N'L' GRS corrections based

on shift amount
and sign hits that

(B) After LGS

(C) Find L-- : c
result in (C) asif
it were
determined by
(B).
‘%i Computer Architecture & Arithmetic Group 11 Stanford University
L7 TP

A3: Subtract/Add post shifts

< Subtract Cases: Add Cases:
<l lea-egP1 ILAll| &, - &
< () no shift (a) o shift
¢« (b)leftsnift by 1. (b) oneright shift
<l lea-egl<1
< (8 no shift:
positive result
<« (b) no shift:

negative result
<« (c) leftshift by >=
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Rounding Cases, Subtract

¢ Rounding is not need when we have
subtract in the close path and
— theresult is negative
— theresult is positive and aleft shift is required
¢ An unadjusted (no shift) round occursin
cases| (@) and 11 (a)

¢ Incasell (b) we have rounded inthe L’
rather than G’ bit but it has the same effect.
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Rounding cases, Add

¢ Incasel (@), the unadjusted (no shift)
rounds occurs.

¢ Incasel (b), we have oneright shift. Here
we must ook at the individual LGs
combinations to select the correct outcome.
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RP and RM modes

¢ These modesrequire an S+2 aswell as S
and S+1.

* Needs another row of half adders, or an
extra cycle when using these modes.
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A3: Two path with integrated round
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A4: Variable Latency FADD

¢ Depending on operand values and what
actions are needed we can provide aresult
in either one or two or three cycles.

¢ Value of this approach is limited by
— Frequency of 1 and 2 ~ results

— Scheduling difficulties in the instruction issuing
mechanism.

— Collisions in pipelined implementations.
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VL Add: 2& 3~ VL Add: 2& 3cycle

““““ ¢ The far path requires the full exponent add,
making it the slower path.

¢ So start the close path early (speculatively)
and completein 2~. If the true path was the
far path, we'll know this at the end of the

first cycle.
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VL Add: 1,2 & 3cycle
¢ Some operations may require neither a
preshift nor around.
¢ Even some one bit shifts might be included
in asingle cycle ADD/SUB
 Performance results depends on how
aggressive we are in alocating actions to
thefirst cycle.
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Exponent differences and shifts VL Performance
i
ure 2.12: Performance Summary of Proposed Techniques
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