
EE 486 Winter 02-03

M. J. Flynn 1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 lecture 12: More on Divide,
systems issues and SRT.

M. J. Flynn

(Figures used in slides 4-13 are from

B. Parhami, Computer Arithmetic)

Computer Architecture & Arithmetic Group 2 Stanford University

Non restoring division

• We define the partial remainder as:

 s(j) = r s(j-1) - qj d

• For binary, r =2 and qj in{-1,1}

• So we end up with something like:

 1-1-1111-1

Computer Architecture & Arithmetic Group 3 Stanford University

Conversion to binary

• Shift left by 1

• Pad 1 as the new LSB

• Keep the 1 as is and replace any -1 by 0

• Complement the MSB

Proof: use bi = (qi+1)/2 or qi = 2 bi -1

Computer Architecture & Arithmetic Group 4 Stanford University

Non restoring; two views

• These are 2 Partial
remainder diagrams;
– 2 possible quotient digits

(or actions)

– 3 digits; now including the
possibility of a 0 quotient
digit (or no op action).

– The 3 digit set allows a
redundant representation

Partial remainder diagrams

{1, -1}

{1,0,-1}

Computer Architecture & Arithmetic Group 5 Stanford University

Partial Remainder diagrams

• Show the partial remainder’ s range and the
quotient digit to be selected.

• Using the digit set {-1,1} recognizes non restore
correction but each iteration has a full CPA delay.

• Using {-1,0,1} allows us to recognize the skip
over 0 case and do a no op (Software, variable
shift). Also, redundancy allows the delay of only
a CSA per iteration (Hardware).

Computer Architecture & Arithmetic Group 6 Stanford University

SRT

• Sweeney, Robertson and Tocher (SRT)

• Use digit redundancy to simplify/ speed up
divide.

• If we have a redundant set {-1,0,1} for
some combination of s(j) and d (PD
combination) we can select either 0 or –1:
or 0 or 1 and still get the same result.

EE 486 Winter 02-03

M. J. Flynn 2

Computer Architecture & Arithmetic Group 7 Stanford University

Radix-2 SRT

• Choose q to be 0 in
[-1/2, +1/2) and 1 for
P>= +1/2 and –1 for
P <-1/2

• Now comparisons are
with =+/-1/2 not with
D.

Computer Architecture & Arithmetic Group 8 Stanford University

Radix-2 SRT

• If P is in [-1/2,+1/2)
then q = 0; skip and
shift.

• If P >= +1/2 then q = 1
and subtract D

• If P < -1/2 then q = -1
and add D

• Correct by subtracting
-1s from 0s

Computer Architecture & Arithmetic Group 9 Stanford University

Selecting regions

• Overlapping regions
can use either digit for
quotient. Want to
make the selection to
be easy and well as
speeding up the
divisor add/subtract.

Computer Architecture & Arithmetic Group 10 Stanford University

Using CSAs

• By forming only a
high 4b sum for P, we
can select the correct
action; the rest of P
can be left in S+C
form and returned to
the next iteration thru
a CSA (combined with
the D multiple)

Computer Architecture & Arithmetic Group 11 Stanford University

Radix-4 SRT

• Clearly, we want more than 1b per iteration
• Radix-4 gives 2b per iteration.
• There’s a big tradeoff between the

redundancy in the quotient digit set and the
quotient selection complexity.

• {-3,-2,-1,0,1,2,3} provides easy selection
(lots of overlap) but requires +/- 3D.

• {-2,-1,0,1,2} makes selection more complex

Computer Architecture & Arithmetic Group 12 Stanford University

Radix-4 SRT

Using {-3,…,+3)
Note the overlap above
And the easy selection

(right)

EE 486 Winter 02-03

M. J. Flynn 3

Computer Architecture & Arithmetic Group 13 Stanford University

Radix-4 SRT

Digit set {-2,..+2}now
easy generation but

the selection (right) is
more complex.

Computer Architecture & Arithmetic Group 14 Stanford University

SRT

• Has been the most widely used (especially
radix-4); radix-8 is also sometimes used.
That’s probably the practical limit though
it’ s possible to pipeline 2 lower order SRT
to get the equivalent of a higher order SRT.

• Since it’s subtractive, SRT gives IEEE
quotient and the remainder.

