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Fast algorithms

• Table lookup (large tables) using bipartite 
table(s) (lecture 15)

• Multiplicative (all use a small table to start)
– Binomial series

– Newton Raphson

– Higher order series (lecture 15)
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Multiplicative divide

• All approaches use (a) x (1/b), and find the  
reciprocal and then multiply by the 
numerator. Sometimes this multiply can be 
done earlier during the formation of the 
reciprocal.

• Two general approaches to finding 1/b
– Series : 1/b = 1/(1+x) = 1-x+x2-x3   

– NR: for f(x)=0 find x so that x is 1/b.
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Binomial series

• Q = a/b = a (1/b) = a (1/(1+x)), this is expressible 
as as series 1/(1+x) = 1-x+x2-x3+x4 …. = 

(1-x)(1+x2)(1+x4)(1+x8)….
• 1-x =1-(b-1) =2-b and 1+x = b; C(1-x2) =1+ x2

• Continue, forming (1+x4)(1+x8)(1+x16)..
• Since x=b-1; 0.5<=b < 1.0; -0.5<= x < 0
• So a term like x8 has 8 leading zeros and can 

affect the reciprocal in only the 9th place.
• Series is quadratically convergent (doubles 

precision each iteration.)
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Starter tables

• Suppose we look up the first 8b of 1/b

• Same as 1/b = (1-x)(1+x2)(1+x4) +ε0: where 
ε0 is O(2-9). Since b =1+x

• (1+x) ((1-x)(1+x2)(1+x4) +ε0)= 1- x8 +bε0

• Now (1- x8 +bε0)(1+ x8 -bε0)= 1- x16 +ε1

• So ε1 = 2b(b-1)8ε0 – bε0
2

• And ε1 < 2-17
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Starter tables

• Since b = 0.1xxxx, we use xxxx as table 
index, so if our 1/b is to be accurate to n bits

• ε0 >| 1/b – (1/(b-2-n)|
• ε0 >| (b-2-n -b)/(b2-b2-n)|
• So if we want ε0 to be less than 2-9 ; then n 

is           b2 ε0 < 2-n

• n =11, so table needs 10 bits, can be 
optimized by recognizing b = 0.5
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Timing

Table=r0
T

(1-x8 )(1+x8)

(1-x16 )(1+x16)

a/b= ar2
T(1+x32)ar1

T (1+x16)ar0
T (1+x8)

b r0
T =1-x8

a r0
T

The initial reciprocal estimate is r0
T
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Newton-Raphson
• Find the root of y=f(x)

• f’(x0)=∆y/∆x

• f’=(0- f(x0))/ (x1- x0)

• x1= x0 - f(x0)/f’(x0)

• Now let f(x)=(1/b) –x

• f’(x) = - (1/x2)

• So xi+1= xi + xi - bxi
2

• xi+1= xi (2 - bxi)
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Newton Raphson error term

• xi+1= xi (2 - bxi) ; let xi = (1/b - ε0) then

• xi+1= (1/b - ε0) (2 – b(1/b - ε0)) so

• = (1/b - ε0) (1+ b ε0) 

• = (1/b - bε0
2)

• So the error is negative and decreases 
quadratically.
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Newton Raphson example:1/0.75

0.0000211.3333131.328125(2-
(1.328125 x 0.75)

3

0.0052081.3281251.25(2- (1.25 x 0.75))2

0.0833341.251(2- 0.75)1

0.3333341.0xi+1= xi (2 - bxi)0

errorqiteration
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NR Timing

Table=r0
T

r0 (2 – br0) r1 (2 – br1) 1/b= r2(2 – br2)

br1br0 br2

8b 16b 32b 64b

a/b
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Timing considerations

• Typically, starter tables are about 8b; so we have 
8, 16, 32, 64; 13b would be ideal for IEEE: 13, 26, 
52, but 13b (8k or so) is difficult..

• The NR takes 2 multiplies/iteration; the binomial 
takes 2, but they can be overlapped using 2 
multipliers: (1+x4)(1-x4) can be done at the same 
time as (1-x)(1+x2) (1+x4). The NR is preferred 
for vector divide, the binomial for iterative 
dividers.
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Equivalence of binomial and NR

• For the NR, xi+1= xi (2 - bxi), let xo =1, 

• So 1/b = (2-b)(2 – b(2-b)) = (2-b)(2-2b+b2)

• = (2-b)(1+(1-b)2)

• Now the binomial series b= 1+x; x= 1- b

• So 1/b= (1-x) (1+x2)(..) = (2-b)(1+(1-b)2)

• Both have the same term by term expansion

• Still they’re not quite the same.
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Remainder considerations

• Either approach gives the quotient and not 
the remainder. Since the iterations are the 
same the quotients are the same. Both fail to 
give the IEEE quotient and fail to protect 
“integers”. (e.g. 1/0.8 = 1.2499999..).

• The remainder and quotient correction can 
be determined by 1- (b x q) = remainder; 
where the b x q product is 2n bits.
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Remainder considerations 
(continued)

• The remainder and quotient correction can 
be determined by 1- (b x q) = remainder. 
The remainder must be positive in s+m.

• So if the leading n bits of the product are 
1’s (the b q product is 2n bits) we have a 
negative remainder-- then correct the q.
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Hardware optimizations

• (1+x) ((1-x)(1+x2)(1+x4))= 1- x8

• This is an 8 x 8 multiply and so is (1-x8)

(1+x8)= 1- x16 so small multipliers or 
multiplies in a single multiplier are possible.

It is also possible to constrain the multiplier 
hardware so that the larger products take 
multiple passes.
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NR and square root

• The simplest approach is to let f(x) = b-x2

• Then f’(x)= -2x and the iteration is

• xi+1= xi/2+b/(2xi); but this involves a divide which 
may be time consuming.

• An alternative is to find the root of the reciprocal 
of the square root. With that we can find the true 
square root by a multiply.

• Often the root reciprocal is the object, anyway.
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NR and reciprocal of the SQRT

• Now let f(x) = b – 1/x2 then f’(x)= 2/x3

• So the iteration is xi+1= (xi/2)(3 - b xi
2); 

• Also converges quadratically; needs 3 
multiplies (compared to an add and a 
divide). Since it converges to 1/SQRT(b) a 
final multiply (by b) may be needed to form 
the SQRT(b).
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NR and square root

• The SQRT is an infrequent operation

• The rule of 9.1: the latency of SQRT should 
be no worse than 9.1 times the latency of 
divide….this is the difference in  frequency 
between the two operations.

• Minimum HW support for SQRT should 
meet the rule.


