
EE 486 Winter 02-03

M. J. Flynn 1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 lecture 11: Divide and
Square Root

M. J. Flynn

Computer Architecture & Arithmetic Group 2 Stanford University

Fast algorithms

• Table lookup (large tables) using bipartite
table(s) (lecture 15)

• Multiplicative (all use a small table to start)
– Binomial series

– Newton Raphson

– Higher order series (lecture 15)

Computer Architecture & Arithmetic Group 3 Stanford University

Multiplicative divide

• All approaches use (a) x (1/b), and find the
reciprocal and then multiply by the
numerator. Sometimes this multiply can be
done earlier during the formation of the
reciprocal.

• Two general approaches to finding 1/b
– Series : 1/b = 1/(1+x) = 1-x+x2-x3

– NR: for f(x)=0 find x so that x is 1/b.

Computer Architecture & Arithmetic Group 4 Stanford University

Binomial series

• Q = a/b = a (1/b) = a (1/(1+x)), this is expressible
as as series 1/(1+x) = 1-x+x2-x3+x4 …. =

(1-x)(1+x2)(1+x4)(1+x8)….
• 1-x =1-(b-1) =2-b and 1+x = b; C(1-x2) =1+ x2

• Continue, forming (1+x4)(1+x8)(1+x16)..
• Since x=b-1; 0.5<=b < 1.0; -0.5<= x < 0
• So a term like x8 has 8 leading zeros and can

affect the reciprocal in only the 9th place.
• Series is quadratically convergent (doubles

precision each iteration.)

Computer Architecture & Arithmetic Group 5 Stanford University

Starter tables

• Suppose we look up the first 8b of 1/b

• Same as 1/b = (1-x)(1+x2)(1+x4) +ε0: where
ε0 is O(2-9). Since b =1+x

• (1+x) ((1-x)(1+x2)(1+x4) +ε0)= 1- x8 +bε0

• Now (1- x8 +bε0)(1+ x8 -bε0)= 1- x16 +ε1

• So ε1 = 2b(b-1)8ε0 – bε0
2

• And ε1 < 2-17

Computer Architecture & Arithmetic Group 6 Stanford University

Starter tables

• Since b = 0.1xxxx, we use xxxx as table
index, so if our 1/b is to be accurate to n bits

• ε0 >| 1/b – (1/(b-2-n)|
• ε0 >| (b-2-n -b)/(b2-b2-n)|
• So if we want ε0 to be less than 2-9 ; then n

is b2 ε0 < 2-n

• n =11, so table needs 10 bits, can be
optimized by recognizing b = 0.5

EE 486 Winter 02-03

M. J. Flynn 2

Computer Architecture & Arithmetic Group 7 Stanford University

Timing

Table=r0
T

(1-x8)(1+x8)

(1-x16)(1+x16)

a/b= ar2
T(1+x32)ar1

T (1+x16)ar0
T (1+x8)

b r0
T =1-x8

a r0
T

The initial reciprocal estimate is r0
T

Computer Architecture & Arithmetic Group 8 Stanford University

Newton-Raphson
• Find the root of y=f(x)

• f’(x0)=∆y/∆x

• f’=(0- f(x0))/ (x1- x0)

• x1= x0 - f(x0)/f’(x0)

• Now let f(x)=(1/b) –x

• f’(x) = - (1/x2)

• So xi+1= xi + xi - bxi
2

• xi+1= xi (2 - bxi)

Computer Architecture & Arithmetic Group 9 Stanford University

Newton Raphson error term

• xi+1= xi (2 - bxi) ; let xi = (1/b - ε0) then

• xi+1= (1/b - ε0) (2 – b(1/b - ε0)) so

• = (1/b - ε0) (1+ b ε0)

• = (1/b - bε0
2)

• So the error is negative and decreases
quadratically.

Computer Architecture & Arithmetic Group 10 Stanford University

Newton Raphson example:1/0.75

0.0000211.3333131.328125(2-
(1.328125 x 0.75)

3

0.0052081.3281251.25(2- (1.25 x 0.75))2

0.0833341.251(2- 0.75)1

0.3333341.0xi+1= xi (2 - bxi)0

errorqiteration

Computer Architecture & Arithmetic Group 11 Stanford University

NR Timing

Table=r0
T

r0 (2 – br0) r1 (2 – br1) 1/b= r2(2 – br2)

br1br0 br2

8b 16b 32b 64b

a/b

Computer Architecture & Arithmetic Group 12 Stanford University

Timing considerations

• Typically, starter tables are about 8b; so we have
8, 16, 32, 64; 13b would be ideal for IEEE: 13, 26,
52, but 13b (8k or so) is difficult..

• The NR takes 2 multiplies/iteration; the binomial
takes 2, but they can be overlapped using 2
multipliers: (1+x4)(1-x4) can be done at the same
time as (1-x)(1+x2) (1+x4). The NR is preferred
for vector divide, the binomial for iterative
dividers.

EE 486 Winter 02-03

M. J. Flynn 3

Computer Architecture & Arithmetic Group 13 Stanford University

Equivalence of binomial and NR

• For the NR, xi+1= xi (2 - bxi), let xo =1,

• So 1/b = (2-b)(2 – b(2-b)) = (2-b)(2-2b+b2)

• = (2-b)(1+(1-b)2)

• Now the binomial series b= 1+x; x= 1- b

• So 1/b= (1-x) (1+x2)(..) = (2-b)(1+(1-b)2)

• Both have the same term by term expansion

• Still they’re not quite the same.

Computer Architecture & Arithmetic Group 14 Stanford University

Remainder considerations

• Either approach gives the quotient and not
the remainder. Since the iterations are the
same the quotients are the same. Both fail to
give the IEEE quotient and fail to protect
“integers”. (e.g. 1/0.8 = 1.2499999..).

• The remainder and quotient correction can
be determined by 1- (b x q) = remainder;
where the b x q product is 2n bits.

Computer Architecture & Arithmetic Group 15 Stanford University

Remainder considerations
(continued)

• The remainder and quotient correction can
be determined by 1- (b x q) = remainder.
The remainder must be positive in s+m.

• So if the leading n bits of the product are
1’s (the b q product is 2n bits) we have a
negative remainder-- then correct the q.

Computer Architecture & Arithmetic Group 16 Stanford University

Hardware optimizations

• (1+x) ((1-x)(1+x2)(1+x4))= 1- x8

• This is an 8 x 8 multiply and so is (1-x8)

(1+x8)= 1- x16 so small multipliers or
multiplies in a single multiplier are possible.

It is also possible to constrain the multiplier
hardware so that the larger products take
multiple passes.

Computer Architecture & Arithmetic Group 17 Stanford University

NR and square root

• The simplest approach is to let f(x) = b-x2

• Then f’(x)= -2x and the iteration is

• xi+1= xi/2+b/(2xi); but this involves a divide which
may be time consuming.

• An alternative is to find the root of the reciprocal
of the square root. With that we can find the true
square root by a multiply.

• Often the root reciprocal is the object, anyway.

Computer Architecture & Arithmetic Group 18 Stanford University

NR and reciprocal of the SQRT

• Now let f(x) = b – 1/x2 then f’(x)= 2/x3

• So the iteration is xi+1= (xi/2)(3 - b xi
2);

• Also converges quadratically; needs 3
multiplies (compared to an add and a
divide). Since it converges to 1/SQRT(b) a
final multiply (by b) may be needed to form
the SQRT(b).

EE 486 Winter 02-03

M. J. Flynn 4

Computer Architecture & Arithmetic Group 19 Stanford University

NR and square root

• The SQRT is an infrequent operation

• The rule of 9.1: the latency of SQRT should
be no worse than 9.1 times the latency of
divide….this is the difference in frequency
between the two operations.

• Minimum HW support for SQRT should
meet the rule.

