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Fast agorithms

 Tablelookup (large tables) using bipartite
table(s) (lecture 15)

» Multiplicative (all use asmall tableto start)
— Binomial series
— Newton Raphson
— Higher order series (lecture 15)
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Multiplicative divide

* All approaches use (a) x (1/b), and find the
reciprocal and then multiply by the
numerator. Sometimes this multiply can be
done earlier during the formation of the
reciprocal.

» Two general approaches to finding 1/b
— Series: 1/b = 1/(1+x) = 1-x+x2-x3
—NR: for f(x)=0 find x so that x is 1/b.
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Binomial series

* Q=ab=a(lb)=a(l/(1+x)), thisis expressible
as as series 1/(1+x) = 1-X+x2-x3+x4 -+ =

(1-X) (1+x3) (1+x4)(1+x9)....

¢ 1-x =1-(b-1) =2-b and 1+x = b; C(1-x?) =1+ X?

* Continue, forming (1+x4)(1+x8)(1+x1)..

* Sincex=b-1; 0.5<=b < 1.0; -0.5<=x<0

 So aterm like x8 has 8 leading zeros and can
affect the reciprocal in only the 9" place.

» Seriesis quadratically convergent (doubles
precision each iteration.)
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Starter tables

* Suppose we look up thefirst 8b of 1/b

* Sameas 1/b = (1-x)(1+x?)(1+x%) +&,; where
€,150(2°9). Since b =1+x

(1+%) (X)L (L+x) +€0)= 1- X +bE
Now (1- X8 +be)(1+ x8 -be )= 1- X6 +¢,

So g, = 2b(b-1)8, — be?

* Andg, <217
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Starter tables

» Since b = 0.1xxxX, we use xxxx as table
index, soif our 1/bis to be accurate to n bits

&> Vb — (1/(b-27)|

€, >| (b-2" -b)/(b?-b21)|

» Soif wewant g, to belessthan 2° ; then n
is b?g < 2n

* n =11, so table needs 10 bits, can be

optimized by recognizing b = 0.5
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Timing Newton-Raphson
* Find the root of y=f(x)
o 7 (Xp)=Ay/AX

‘ { { { { | * P=(0- f(xo))/ (X1 %o)

arg”  arg (1+x8)  ar,T(1+x%)  ab=ar, (1+x%?)

I
Table=r," T (1-%8 )(1+8) T .« X=X - f(xo)/r(xo)
brg” =18 (118 ) (1) « Now let f(x)=(1/b) —x
o P(x)=- (X9
* S0 X=X + % - bx2
Theinitial reciprocal estimate is ry" * X=X (2-bx)

SETRE oy
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Newton Raphson error term Newton Raphson example:1/0.75
* X=X (2-bx) ; let x; = (/b - ;) then iteration q error
* Xis1= (b - &g) (2 b(1/b - &) sO 0 X,y= X, (2- bx) 1.0 0.333334
* = (Ub-¢gp) (1+ bey
1 1(2- 0.75 1.25 0.083334
« = (Ub-be?d (2-0.79)
» Sotheerror is negative and decreases 2 1.25(2- (1.25x 0.75)) |1.328125 | 0.005208
quadratically.
3 1.328125(2- 1.333313 | 0.000021
(1.328125 x 0.75)
L ™ L
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NR Timing Timing considerations
br, br, br, alb * Typically, starter tables are about 8b; so we have
| | ‘ | ‘ | ‘ LY 8, 16, 32, 64; 13b would beideal for IEEE: 13, 26,
" Tablesr,T | ‘ ‘ ‘ ! ‘ ‘ ! ‘ 52, but 13b (8k or so) is difficult..
T T T T multipliers: (1+x#)(1-x*) can be done at the same
time as (1-x)(1+x?) (1+x4). The NR is preferred
8b 16b 32b 64b for vector divide, the binomial for iterative
dividers.
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Equivalence of binomial and NR Remainder considerations
* FortheNR, X;,,= X; (2- bx;), let x, =1, » Either approach gives the quotient and not
* S0 1/b = (2-b)(2— b(2-b)) = (2-b)(2-2b+b?) the remainder. Since the iterations are the
. = (2-b)(1+(L-b)?) same the quotients are the same. Both fail to
oo . give the | EEE quotient and fail to protect
* Now the binomial series b= 1+X; x= 1- b “integers™. (e.g. 1/0.8 = 1.2499999.).
* So Ub= (1X) (19x)(.) = (2-b)(1+(1-b)?) « The remainder and quotient correction can
* Both have the same term by term expansion be determined by 1- (b x ) = remainder;
* Still they’re not quite the same. wheretheb x q product is 2n bits.
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Remainder considerations o
(continued) Hardware optimizations
 The remainder and quotient correction can " PRI
be determined by 1- (b x q) = remainder. * (1+%) (1) (1+x?)(1+x9))= 1- x
The remainder must be positivein s+tm. * Thisisan 8 x 8 multiply and so is (1-x5)
» Soif theleading n bits of the product are (1+x8)= 1- x16 so small multipliers or
1’s (the b q product is 2n bits) we have a multipliesin a single multiplier are possible.
negative remainder-- then correct the g. It is also possible to constrain the multiplier
hardware so that the larger products take
multiple passes.
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NR and square root NR and reciprocal of the SQRT
 The simplest approach isto let f(x) = b-x? » Now let f(x) = b— 1/x2 then f*(x)= 2/x3
» Then f’(x)=-2x and theiteration is  Sotheiteration isx,,= (x/2)(3 - b x?);
* X.1= Xi/2+b/(2x;); but this involves a divide which « Also converges quadratically; needs 3
/T:y alt;:rtrllgfe Zozst‘;n;ll:c? .theroot of thereciprocal multiplies (compared to an add and a
° vel .o . .
of the sguare root. With that we can find the true glv;de). ls',nfe ILCCI):vergezto g;(eng:—(?) a
square root by amultiply. inal multiply (by b) may ben otom
 Often theroot reciprocal is the object, anyway. the SQRT(b).
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NR and square root

» The SQRT is an infrequent operation

 Therule of 9.1: the latency of SQRT should
be no worse than 9.1 times the latency of
divide....thisisthe differencein frequency

between the two operations.
* Minimum HW support for SQRT should
mest therule.
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