
EE 486 Winter 02-03

M. J. Flynn 1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 lecture 10: Multiply iteration
and an introduction to Divide

M. J. Flynn

Computer Architecture & Arithmetic Group 2 Stanford University

Patent searching

• In addition to your homework assignment
also go to
http://www.uspto.gov/patft/index.html
and download the first page (image not text)
of three arithmetic oriented patents 1) from
patent applications 2) from issued patents
and 3) one of whose inventors is
“Rumynin”

Computer Architecture & Arithmetic Group 3 Stanford University

Databases: Patent Grant and Patent Application Full-Text and Full-Page Images
Patent Full-Text and Full-Page Image Databases
Issued Patents (full-text since 1976, full-page images since 1790)
Patent Applications (published since 15 March 2001)

Quick Search
Advanced Search
Patent Number Search
Access Full-Page Images Directly
Database Notices and Status
Database Contents
Quick Search
Advanced Search
Publication Number Search

Important Notices!
How to Access Full-Page Images
Problems Accessing the Databases?
Report Data Content Problems
Tools to Help in Searching by Patent Classification
Downloadable Published Sequence Listings

HOME | INDEX | SEARCH | SYSTEM STATUS | BUSINESS CENTER |
NEWS&NOTICES |

Computer Architecture & Arithmetic Group 4 Stanford University

Multipliers

9, 552 sqrt (n)Higher
Order array

8, 66sqrt(2n-6)OS (type1)

9, 552 sqrt (n)ZM (type1)

8, 102[log2n]2[log2n-1]Binary tree

7depends2log3/2 nWallace

D,W for
27b case

WD= Delay
(CSAs)

Type

Computer Architecture & Arithmetic Group 5 Stanford University

Trees, arrays and iteration

• Arrays and trees need not be fully built out,
but smaller structures can be iterated on to
produce the product. While requiring
multiple passes through the hardware, the
simpler pp generation and reduction can
make the processes faster than expected.

• The trick is (as with clocking) low iteration
overhead

Computer Architecture & Arithmetic Group 6 Stanford University

The Earle latch

• Adds latch to existing
logic with little
overhead, no delay.

• Pipeline rate is 4 gate
delays (2 to transit and
2 to hold).

• Becomes the basis for
iterative multipliers.

EE 486 Winter 02-03

M. J. Flynn 2

Computer Architecture & Arithmetic Group 7 Stanford University

Earle latch

• Cycle time of 4 gate delays (2 for clock and
transit and 2 for ~clock).

• No additional transit delay

• Useful in pipelining CSA arrays and trees

• BUT, iterate on what?

Computer Architecture & Arithmetic Group 8 Stanford University

Iterate on the CPA

• Brings the reduced
product back into the
tree.

• The tree now has
n/I+1 inputs where I is
the number of
iterations.

• The CPA output is
shifted by k n/I bits, k
the multiplier encoder

Computer Architecture & Arithmetic Group 9 Stanford University

Iterate on the tree

Inputs now (n/I) +2

But no longer need the
CPA as part of the
iteration

Need to shift the CPA
output to align the
pp’s

Computer Architecture & Arithmetic Group 10 Stanford University

Iterate on a “compressor”

• Add a [4:2] at the
bottom of the tree,
then iterate on the two
outputs.

• Need to balance the
iteration delays.
Iteration is now 4 gate
delays. The tree and
the pp generator must
support this rate.

Computer Architecture & Arithmetic Group 11 Stanford University

Iteration

• Iteration reduces the
cost of pp generation
by I and of pp
reduction somewhat
less than that.

• If the iteration
overhead can be kept
low the result may
compare favorably to
a fully built tree.

Computer Architecture & Arithmetic Group 12 Stanford University

Example, 64x64 using 8x8
generators and (5,5,4) counters

• Consider a fully built tree. The height,n, is
15. There are 3 (5,5,4) counter delays in the
tree.

• The pp generation uses 64 pp generators
and 152 counters and a 128b CPA

EE 486 Winter 02-03

M. J. Flynn 3

Computer Architecture & Arithmetic Group 13 Stanford University Computer Architecture & Arithmetic Group 14 Stanford University

Same multiplier with iteration

• Suppose we iterate on a single level of
(5,5,4) counters. We reduce 5 pp’s in
iteration 1 and 3pp’s in each iteration
thereafter. So 1+4 iterations covers the 15
pp’s. Now we need about 30 pp generators
and only 32 or so counters. The CPA spans
only about 74b.

• The counter delay is 5, ignoring the
iteration overhead.

Computer Architecture & Arithmetic Group 15 Stanford University

Two 64b multipliers compared

74b5 (plus
clocking
overhead)

3Iterative

(one level)

128b315Tree

CPA size
required

Depth in
(5,5,4)’s

pp’s needed
to be
generated

Type

Computer Architecture & Arithmetic Group 16 Stanford University

Multipliers

• Multipliers (especially n > 50) are big and
expensive, with potentially serious wire
congestion and length problems.

• Yes, it’s possible to make a really awful
multiplier that’s slower than a better design
with half the hardware.

• Indeed, there’s room for yet one more
multiplier patent! Good luck.

Computer Architecture & Arithmetic Group 17 Stanford University

Divide

• Divisor/dividend = quotient + rem./dividend

• Basic approaches:
– Subtractive (restoring, non restoring and SRT)

– Multiplicative (Newton-Raphson, Binomial
expansion in Taylor series)

– Table look up (bipartite tables)

Computer Architecture & Arithmetic Group 18 Stanford University

How important is divide?

• How much hardware should be devoted to
divide and square root?

• Can compilers schedule long latency ops?
• What’s the role of multiple issue?
• Can the multiplier be shared with MPY and

DIV?
• Can the divide be shared with DIV and

SQRT?

EE 486 Winter 02-03

M. J. Flynn 4

Computer Architecture & Arithmetic Group 19 Stanford University

Compiler effects

• Compiler optimization
has 2 effects.
– It decreases the number

of LD/ST instructions,
increasing the
frequency of DIV

– Makes DIV relatively
more important, but it
also can manage
dependencies better.

Computer Architecture & Arithmetic Group 20 Stanford University

Multiple issue effects

• Multiple issue
machines need access
to results earlier, even
with optimized code.

• Earlier usage means
more CPI delay due to
DIV latency

• Note the AT =k
behavior for the DIV
implementations

Computer Architecture & Arithmetic Group 21 Stanford University

Area- time tradeoffs

>100,000< .01<4Very High radix

6665.01-.074-108b

4070.04-.110-204b, simple NR

3110.1-.320-402b

25000.5>401b

Area (rbe)Excess
CPI

Latency
(~)

algorithm

Computer Architecture & Arithmetic Group 22 Stanford University

Multiple Issue effects

• The higher the issue
rate the higher the CPI
delay due to DIV. The
relative effects are
even more significant.

• MI processors need
good divide support.

Computer Architecture & Arithmetic Group 23 Stanford University

Sharing a multiplier with a divider

• If a multiplier is
shared with the divide
unit the conflict cost is
low, especially for fast
algorithms(.02-.03
excess CPI)

• The problem is more
of implementation…a
multi-function unit has
more overhead.

Computer Architecture & Arithmetic Group 24 Stanford University

Subtractive divide

• Restoring

• Non restoring

• Shift over 0’s

• Brute force (multiple subtractors)

EE 486 Winter 02-03

M. J. Flynn 5

Computer Architecture & Arithmetic Group 25 Stanford University

Restoring and non restoring

• To find qn, … q1, q0; R(n) = Dividend; trial
qi = 1; d is the divisor R(0) = remainder

• R(i+1) = R(i) – qi x 2i d; if result is negative
then set qi = 0 and restore … R(I) + 2i d; if
positive then set qi = 1 and proceed.

• Non restore… if negative then set qi= 0 and
proceed with R(i+1) = R(i) + qi x 2i d;

• Note that - 2 d + d = -d

Computer Architecture & Arithmetic Group 26 Stanford University

Example

Computer Architecture & Arithmetic Group 27 Stanford University

Speeding up division

• Skip over 0’s and skip over 1’s; similar to
multiply

• Higher radix: radix 4 (2b/iteration) or radix
8 (3b/iteration. Widely used with redundant
digit set.

• Simplest approach is to use multiple
subtractors… also called brute force. Need
3 for 2b and 7 for 3b.

Computer Architecture & Arithmetic Group 28 Stanford University

Quotient bits determined; 1 and 3 pr.

Computer Architecture & Arithmetic Group 29 Stanford University

Redundancy in division

• Multiple subtractors can be replaced with
redundant digit sets. This leads to SRT
division.(lecture 12)

• Usually limited to 2b / iteration.

