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EE 486 lecture 10: Multiply iteration 
and an introduction to Divide
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Patent searching

• In addition to your homework assignment 
also go to 
http://www.uspto.gov/patft/index.html
and download the first page (image not text) 
of three arithmetic oriented patents 1) from 
patent applications 2) from issued patents 
and 3) one of whose inventors is 
“Rumynin”
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Databases: Patent Grant and Patent Application Full-Text and Full-Page Images     
Patent Full-Text and Full-Page Image Databases
Issued Patents (full-text since 1976, full-page images since 1790)
Patent Applications (published since 15 March 2001)

Quick Search
Advanced Search
Patent Number Search        
Access Full-Page Images Directly
Database Notices and Status
Database Contents
Quick Search
Advanced Search
Publication Number Search                 

Important Notices!
How to Access Full-Page Images
Problems Accessing the Databases?
Report Data Content Problems
Tools to Help in Searching by Patent Classification
Downloadable Published Sequence Listings  

HOME | INDEX | SEARCH | SYSTEM STATUS | BUSINESS CENTER | 
NEWS&NOTICES | 
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Multipliers

9, 552 sqrt (n)Higher 
Order array

8, 66sqrt(2n-6)OS (type1)

9, 552 sqrt (n)ZM (type1)

8, 102[log2n]2[log2n-1]Binary tree

7depends2log3/2 nWallace

D,W for 
27b case

WD= Delay 
(CSAs)

Type
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Trees, arrays and iteration

• Arrays and trees need not be fully built out, 
but smaller structures can be iterated on to 
produce the product. While requiring 
multiple passes through the hardware, the 
simpler pp generation and reduction can 
make the processes faster than expected.

• The trick is (as with clocking) low iteration 
overhead
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The Earle latch

• Adds latch to existing 
logic with little 
overhead, no delay.

• Pipeline rate is 4 gate 
delays (2 to transit and 
2 to hold).

• Becomes the basis for 
iterative multipliers.
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Earle latch

• Cycle time of 4 gate delays ( 2 for clock and 
transit and 2 for ~clock).

• No additional transit delay

• Useful in pipelining CSA arrays and trees

• BUT, iterate on what?
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Iterate on the CPA

• Brings the reduced 
product back into the 
tree. 

• The tree now has 
n/I+1 inputs where I is 
the number of 
iterations.

• The CPA output is 
shifted by k n/I bits, k 
the multiplier encoder
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Iterate on the tree

Inputs now (n/I) +2

But no longer need the 
CPA as part of the 
iteration

Need to shift the CPA 
output to align the 
pp’s
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Iterate on a “compressor”

• Add a [4:2] at the 
bottom of the tree, 
then iterate on the two 
outputs.

• Need to balance the 
iteration delays. 
Iteration is now 4 gate 
delays. The tree and 
the pp generator must 
support this rate.
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Iteration 

• Iteration reduces the 
cost of pp generation 
by I and of pp 
reduction somewhat 
less than that.

• If the iteration 
overhead can be kept 
low the result may 
compare favorably to 
a fully built tree.
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Example, 64x64 using 8x8 
generators and (5,5,4) counters

• Consider a fully built tree. The height,n, is 
15. There are 3 (5,5,4) counter delays in the 
tree. 

• The pp generation uses 64 pp generators 
and 152 counters and a 128b CPA
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Same multiplier with iteration

• Suppose we iterate on a single level of 
(5,5,4) counters. We reduce 5 pp’s in 
iteration 1 and 3pp’s in each iteration 
thereafter. So 1+4 iterations covers the 15 
pp’s. Now we need about 30 pp generators 
and only 32 or so counters. The CPA spans 
only about 74b.

• The counter delay is 5, ignoring the 
iteration overhead.
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Two 64b multipliers compared

74b5 (plus 
clocking 
overhead)

3Iterative

(one level)

128b315Tree

CPA size 
required

Depth in 
(5,5,4)’s

pp’s needed 
to be 
generated

Type
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Multipliers 

• Multipliers (especially n > 50) are big and 
expensive, with potentially serious wire 
congestion and length problems.

• Yes, it’s possible to make a really awful 
multiplier that’s slower than a better design 
with half the hardware.

• Indeed, there’s room for yet one more 
multiplier patent! Good luck.
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Divide

• Divisor/dividend = quotient + rem./dividend

• Basic approaches:
– Subtractive (restoring, non restoring and SRT)

– Multiplicative (Newton-Raphson, Binomial 
expansion in Taylor series)

– Table look up (bipartite tables)
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How important is divide?

• How much hardware should be devoted to 
divide and square root?

• Can compilers schedule long latency ops?
• What’s the role of multiple issue?
• Can the multiplier be shared with MPY and 

DIV?
• Can the divide be shared with DIV and 

SQRT?
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Compiler effects

• Compiler optimization 
has 2 effects.
– It decreases the number 

of LD/ST instructions, 
increasing the 
frequency of DIV

– Makes DIV relatively 
more important, but it 
also can manage 
dependencies better. 
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Multiple issue effects

• Multiple issue 
machines need access 
to results earlier, even 
with optimized code.

• Earlier usage means  
more CPI delay due to 
DIV latency

• Note the AT =k 
behavior for the DIV 
implementations 
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Area- time tradeoffs

>100,000< .01<4Very High radix

6665.01-.074-108b

4070.04-.110-204b, simple NR

3110.1-.320-402b

25000.5>401b

Area (rbe)Excess 
CPI

Latency
(~)

algorithm
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Multiple Issue effects

• The higher the issue 
rate the higher the CPI 
delay due to DIV. The 
relative effects are 
even more significant.

• MI processors need 
good divide support.
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Sharing a multiplier with a divider

• If a multiplier is 
shared with the divide 
unit the conflict cost is 
low, especially for fast 
algorithms(.02-.03 
excess CPI)

• The problem is more 
of implementation…a 
multi-function unit has 
more overhead.
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Subtractive divide

• Restoring 

• Non restoring

• Shift over 0’s

• Brute force (multiple subtractors)
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Restoring and non restoring

• To find qn, … q1, q0; R(n) = Dividend; trial 
qi = 1; d is the divisor R(0) = remainder

• R(i+1) = R(i) – qi x 2i d; if result is negative 
then set qi = 0 and restore … R(I) + 2i d; if 
positive then set qi = 1 and proceed.

• Non restore… if negative then set qi= 0 and 
proceed with R(i+1) = R(i) + qi x 2i d;

• Note that - 2 d + d = -d
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Example
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Speeding up division

• Skip over 0’s and skip over 1’s; similar to 
multiply

• Higher radix: radix 4 (2b/iteration) or radix 
8 (3b/iteration. Widely used with redundant 
digit set. 

• Simplest approach is to use multiple 
subtractors… also called brute force. Need 
3 for 2b and 7 for 3b.
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Quotient bits determined; 1 and 3 pr.
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Redundancy in division

• Multiple subtractors can be replaced with 
redundant digit sets. This leads to SRT 
division.(lecture 12)

• Usually limited to 2b / iteration.


