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The role of arithmetic

• With increasing circuit density available 
with sub micron feature sizes, there’s a 
corresponding broader spectrum of 
arithmetic implementations,

• Signal processors, controllers, wireless dsp, 
crypto, etc.
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SIA Roadmap - 1
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SIA Roadmap - 2
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Semiconductor Industry Roadmap

Year 2001 2005 2008 2014
Technology generation (nm) 180 100 70 35
Wafer size (mm) 300 300 300 450
Defect density (per m

2
) 1742 1262 1101 837

µP die size (mm
2
) 450 622 713 937

Chip Frequency (MHz) 1767 3500 6000 13500
MTx per Chip (Microprocessor) 220 882 2494 19949
Max Power (W) 115 160 170 183

Semiconductor Technology Roadmap (1999)
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Some term used in number 
representation

• The integers: weighted positional number 
system: wpns, residue number system: rns 
and log number system: lns

• Floating point(fpns): IEEE and specialized 
formats

• Redundant number representation rnr. This 
can be used in any number system.

• Optimized representations: log, exponential, 
continued fraction, etc
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The integers

• Weighted positional number system (wpns)
– Non redundant and redundant forms

– X = d0β0 + d1β1 + … + dn-1 β n-1 where β is the 
radix and {di} is the digit set

– If number of symbols in digit set {di} = β then 
we have non – redundant system

– If number of symbols in digit set {di} > β then 
we have redundant system
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The integers

• In general redundant numbers can offer 
some advantages, such as carry free 
addition. The Roman Numeral system is a 
redundant system if one allows for the use 
of improper forms.

• The only redundant system of interest to us 
is the signed digit system (sds) which we’ll 
consider later. 
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WPNS and RNS (non-redundant)

• The residue number system uses n relatively 
prime moduli and defines each digit 
independently as di = X mod mi 

• Two types :optimal and binary based
– Optimal : rns system whose largest modulus 

(mn) is the smallest possible to provide a 
required representation capacity

– Binary : largest modulus of the form 2n and all 
others of the form 2n-i-1 
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{i}, the integers

{m},
Machine

Nos.

Mapping the integers onto the machine numbers: m = i mod βn

βn

bn
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The machine numbers

• The integers, I, map onto the machine 
numbers, M.   I: i   m ε M, i mod βn m, o

• The residue, m, is the least positive 
remainder, o is overflow

• Modular operations:
– (m+n) mod M =(m mod M+n mod M) mod M

– (m-n) mod M =(m mod M - n mod M) mod M

– (mxn) mod M =(m mod M x n mod M) mod M
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The negative numbers

0

M

2M βn –1 is max

0 is min

Negative nos.

Nos in the same residue class
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Representing negative numbers

• Sign and magnitude (s+m)

• Radix complement (rc), diminished radix 
complement (drc). (2M - x) mod 2M= -x

• Where 2M = βn for rc and “2M” = βn –1 for 
drc; in binary n is the number of bits in a 
word, the representational capacity:         
max positive = 2n-1; min = 0 (rc) and      
max positive = 2n-1 – 1; min = 0 (drc)
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The negative numbers: complements

• The complement of x is “2M”-x where 2M 
is βn for rc or βn –1 for drc.

• (x-y) mod 2M= (x +(2M –y)) mod 2M          
= (x-y) mod 2M; result is a valid machine 
number if “x” and “-y” have opposite signs.

• Otherwise overflow, o, is possible and must 
be detected.
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Overflow detection

• Overflow, o is detected when

• o = Cin   V  Cout
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Finding the radix (2’s)complement

• Suppose that i is the first non zero bit in X, 
then for all xj, i > j > οr = 0; rc (xj) = xj = 0. 
For bit i rc(xi) = (β – xi) = xi = 1

• For bits j > i,  rc (xj) = β –1 – xj (inversion).
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Finding the radix (2’s)complement

n +1 bit adder

V

Y +/- X

Y X

Cin

Sign 
of X
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Finding the diminished radix (1’s) 
complement

• For all bits i;  drc (xi) = β – 1 – xi 

• So the drc is just the bit wise complement 
of X.

• But since a βn ALU is used we must correct 
the result so that it is mod (βn – 1). I.e. we 
want to stay in the drc number system but 
our ALUs are in a radix based system.
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Fixing up a radix based result so that 
it remains in the drc.

• If radix result (RR)  RR< βn-1 then 
DRR=RR nothing need be done.

• If radix result RR= βn-1 then DRR=0

• If RR> βn-1 then

• DR= RR + [RR/ (βn-1)]
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drc radix result fix up

βn ALU

correction

RR

Corrected result

X Y
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Integer multiply

• n bits x n bits = 2n bits unsigned

• In s + m product is 2n-1 bits

• In 2’s complement –2n is representable in n 
bits but the product –2n x –2n is not 
representable in 2n-1 bits

Computer Architecture & Arithmetic Group             23 Stanford University

Integer divide: a/b=q+r/b

• In division result q has same sign as a, the 
dividend, but the result is a (q,r) pair and 
thus not unique. While (a) can be 2n bits, 
(b,q and r) are n bits.
– If magnitude q is the same regardless of the 

signs of a,b result is signed division

– If r is always the lpr (least positive remainder, 
including 0) then the (q,r) result is modular
division

Computer Architecture & Arithmetic Group             24 Stanford University

Division

• x/y= q + r/y; any (q,r) satisfies this, so the division 
result has many correct results.

• : s signed division: select q so that the quotient is 
the same regardless of the signs of x,y.

• : m modular division: select q so that the 
remainder is always the least positive remainder.

• Many other forms:such as floor division, q closest 
integer to 0 and r is a signed remainder.
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shifts
• Logical shifts: all bits shift (left or right).

• Arithmetic shifts: sign is fixed, other bits 
shift left or right.
– Left shift by p multiplies by 2p; shift 0’s into 

the lsb.

– Right shift by p divides by 2p; shift sign bit into 
the msb BUT be careful, the result depends on 
the complement coding used.
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Integer divide

• On arithmetic shift division results depend 
on the type of integer complement coding 
that’s used.
– If magnitude q is the same regardless of the 

signs of a,b result is signed division
– If r is always the lpr (least positive-incl 0 -

remainder) then (q,r) result is modular division
– 1’s complement produces a signed (q,r)
– 2’s complement produces a modular (q,r)
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Redundant number representations 
(rnr)

• Applicable to any number system.
• The signed digit number system offers carry 

free addition / subtraction
• SD numbers represent a number with radix 

β >2 using digits {-α,…,−1,0,1,2…,α} 
where β/2 < α < β.

• Summing 2 digits pi = xi + yi. If pi exceeds 
α then it is recoded as wi = pi –β with a 
carry of 1 
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Redundant number representations 
(rnr)

• Summing 2 digits pi = xi + yi. If pi exceeds α then 
it is recoded as wi = pi – β with a carry of 1

• Then the sum is si = wi + ci-1

• The redundant condition assures that no carry will 
propagate more than a single digit

• As  - α + 1 < wi < α – 1

• Extendable to binary, β = 2; because of conversion 
not much used directly at least.


