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Evaluating Elementary Functions in a Numerical
Coprocessor Based on Rational
Approximations

ISRAEL KOREN, SENIOR MEMBER, IEEE, AND OFRA ZINATY

Abstract — High-speed numerical coprocessors for fixed-point
and floating-point arithmetic operations are now available due
to recent advances in VLSI technology. Some of these coproces-
sors are also capable of evaluating elementary functions (log-
arithm, exponential, trigonometric, inverse trigonometric, etc).
Most commonly used methods for hardware evaluation of these
functions are based on simple iterative equations, involving only
shift and add operations. Their major drawback is their lin-
ear convergence which slows down the calculation especially for
high-precision floating-point operands.

In this paper, we examine a different approach to hardware
evaluation of elementary functions for high-precision floating-
point numbers (in particular, the extended double precision for-
mat of the IEEE standard P754). The evaluation is based on
rational approximations of the elementary functions, a method
which is commonly used in scientific software packages.

‘We present a hardware model of a floating-point numeric co-
processor consisting of a fast adder and a fast multiplier, and
add to it minimum hardware required for evaluation of the ele-
mentary functions. Next, we derive rational approximations for
evaluating the elementary functions and test the accuracy of the
results. We then estimate the calculation time of these approx-
imations in the proposed numeric processor. Our final conclu-
sion is that rational approximations can successfully compete
with previously used methods when execution time and silicon
area are considered.

Index Terms— Cordic, elementary functions, numeric copro-
cessor, rational and polynomial approximations.

1. INTRODUCTION

DVANCES in VLSI technology have enabled the de-
ign and implementation of high-speed chips for com-
plex arithmetic operations. There are two types of such arith-
metic chips. The first type includes chips capable of execut-
ing only a limited number of operations like add, subtract,
multiply, and divide. Examples for this type are the Weitek
2265 Adder and the Weitek 2264 Multiplier, the AMD 29325
which contains both adder and multiplier for single precision
floating-point numbers, and the Analog Devices ADSP 3212
and 3222 which are single and double precision multiplier and
ALU (arithmetic logic unit), respectively.
The second type of arithmetic chips consists of general-
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purpose numerical coprocessors which execute a rich reper-
toire of floating-point operations. Examples of this type are
Intel 80287, Motorola 68881, National Semiconductor 32081,
and alike. Most of these general-purpose numerical coproces-
sors support the double extended format of the IEEE standard
for floating-point numbers [9]. The double extended format
consists of 1 sign bit, 15 bit biased exponent, and at least 64
bits of mantissa for a total of (at least) 80 bits.

Many of the chips of the second type are also capable of
evaluating elementary functions. We concentrate in this pa-
per on elementary functions and analyze algorithms for their
calculation. The most commonly used methods for hardware
evaluation of these functions are the “Cordic” type methods.
The original Cordic method was developed by Volder [15]
and then generalized by Walther [16]. Similar techniques were
later on developed, e.g., [13], [3], and several implementa-
tions suggested [1], [14]. All are based on simple iterative
equations, involving only shift and add operations and were
developed in an effort to avoid the time consuming multiply
and divide operations. The major disadvantage of the Cordic
type algorithms is their linear convergence resulting in an exe-
cution time which is linearly proportional to the number of bits
in the operands. Several speedup techniques were therefore
proposed (e.g., [3], [5]), increasing the amount of hardware
needed.

Recent advances in VLSI technology have reduced signif-
icantly the time penalty involved in executing multiplication
and division compared to add/subtract operations. For exam-
ple, the above mentioned Weitek chips execute multiplication
at the same speed as addition; the latency of a single add or
multiply operation for single precision (i.e., 32 bit) floating-
point numbers is 280 ns and it is 320 ns for double precision
(i.e., 64 bit numbers). These two operations have a pipeline
throughput of one result every two cycles (80 ns). The 2264
chip is capable of executing single precision division in 600
ns and double precision division in 800 ns. The Analog De-
vices chips also execute multiplication and addition at the same
speed. The pipeline throughput for both operations is one re-
sult per cycle (50 ns) for single or double format operation.
The latency is 130 ns for single precision and 155 ns for
double precision. The multiplier is also capable of execut-
ing single and double precision division in 300 and 600 ns,
respectively.

Also, the high density of VLSI chips now enables the use of
high-precision floating-point formats such as the 80 bit double

0018-9340/90/0800-1030$01.00 © 1990 IEEE




KOREN AND ZINATY: ELEMENTARY FUNCTIONS IN NUMERICAL COPROCESSOR

extended IEEE format. For such formats the linear conver-
gence of the Cordic type methods slows down the calculation
considerably. Consequently, algorithms for hardware evalua-
tion of elementary functions which require a smaller number
of steps even if some of them involve multiplication or division
may now be more attractive than the Cordic type algorithms.

One possible approach to hardware evaluation of elemen-
tary functions is based on polynomial or rational approxi-
mations of these functions, a method which is common in
scientific software packages. Hwang ef al. [8] have presented
a systolic pipeline implementation of Chebyshev polynomial
approximations. We study in this paper rational approxima-
tions and examine the accuracy of the results obtained when
these approximations are used for the evaluation of elementary
functions.

In the next section, a hardware model for a numerical co-
processor capable of executing this type of algorithm is pre-
sented. Polynomial and rational approximations for some ele-
mentary functions are derived in Section III and their accuracy
is tested. In Section IV, the execution time of these approx-
imations is estimated and then compared to other methods.
Final conclusions are presented in Section V.

II. THE HARDWARE MODEL FOR THE NUMERICAL COPROCESSOR

Our conceptual model of a general-purpose coprocessor is
depicted in Fig. 1. It has a microprogram control unit and con-
tains two major arithmetic units, a floating-point adder and a
floating-point multiplier. The floating-point adder unit consists
of two adders: a mantissa adder and a small (15 bit) exponent
adder. The floating-point multiplier unit contains a mantissa
multiplier and an exponent adder. These two units have sep-
arate flags like sign, sign of exponent, zero, zero fraction,
infinity, and NAN (Not A Number) [9]. In addition, the co-
processor contains a bus interface unit (BIU), an instruction
register (IR), and decode logic and an address generator (for
the microcode ROM). There is also a register file consisting of
eight registers accessible by the user and ten internal registers
(RO-R9), four of which are connected to the adder (RO-R3),
and four to the multiplier (R4~R7). These ten registers allow
concurrent execution of add and multiply operations.

To these functional units we add a relatively small amount
of hardware necessary to support the calculation of elemen-
tary functions. This includes some extra microinstructions in
the control ROM and a separate coefficient ROM with less
than 100 locations to hold the coefficients for the rational or
polynomial approximations and the constants needed for the
argument reduction step.

There is also a separate conversion unit which converts
the single and double formats of the incoming floating-point
operands to the double extended format which is the only one
used internally. It also converts the final results to the proper
external format. The use of a larger internal format increases
the accuracy of all intermediate calculations which is espe-
cially important for the complex elementary functions.

III. DERIVING POLYNOMIAL AND RATIONAL APPROXIMATIONS

All continuous elementary functions can be approximated
by either a polynomial of degree m, P, (x), or a rational

1031

32

BIU
1/0 BUS
CONVERSION
REGISTER
FILE
EXECPTION
’—’l—] MICRO - CODE| | COEFF.
ROM ROM

1+15+68

MULTIPLIER

STATUS

Block diagram of the numerical coprocessor.

Fig. 1.

expression R, (x) where m and n are the degrees of the nu-
merator and denominator polynomials, respectively. A poly-
nomial approximation is a special case of a rational one,
P, (x) = Ryo(x), and consequently, only the more general
case of rational approximations will be discussed in what fol-
lows. The accuracy of the rational approximation is deter-
mined by the degrees m and n and by the values of the coef-
ficients. To reduce the number of coefficients (and thus speed
up the calculation) and avoid singular points, an argument
interval [a, ] which is smaller than the function domain is
in many cases used. An algorithm for evaluating elementary
functions using rational approximation, therefore includes in
principle, the following three steps:

1) reduction of the argument to a predetermined approxi-
mation interval ([a, b])

2) evaluating the rational approximation of the reduced ar-
gument

3) obtaining the final result.

The coeflicients of the rational approximation R,,,(x) for a
given function f(x) are selected so as to minimize the maxi-
mum relative error in the interval [a, b]:

Rn(x) —f(X)]
Sfx)

min max
R (X)EV mnla, b] [a, b]

where V,,,la, b] is the set of all rational expressions with
numerator and denominator of degrees m and n (or less), re-
spectively. According to Chebyshev’s theorem [6] there is a
unique rational approximation which minimizes the above rel-
ative error. Given a function f(x) and the desired accuracy,
we have to choose the approximation interval [a, b], select
proper values for m and n (which implies deciding on either
a rational or a polynomial approximation), and finally calcu-
late the coefficients of the approximation which minimizes the
maximum relative error.

For the elementary functions there is a natural selection
of the intervals [a, b] which simplifies the step of argument
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reduction. This step is based on properties like periodicity
(e.g., sin(27k + x) = sin x), symmetry (e.g., cos(—x) =
cos x), additivity (e.g., In(x - ) = In x +In y) and alike.
Consequently, the following intervals are commonly selected
[71.

. T
1) For sin, cos, and tan, [a, b] = [—Z, Z]'
[ 1
-75, \/E:I~
|-t 1
’ [a’ b] - |: 2’ 2} .
4) For tan™', [a, b] =[-1, 1].
5) For 2%, [a, b] = |0, %]

2) For In, [a, b] =

3) For sin™!, cos™!

We next have to decide between rational and polynomial ap-
proximations. Rational approximations are usually preferred,
since they are in most cases more accurate than polynomial
approximations when the same number of coefficients is used
[6], [7]. More importantly, rational approximations are more
suitable to our model of a numeric coprocessor since they can
take advantage of the high level of parallelism available in the
coprocessor. An add operation for evaluating the numerator
and a multiply operation for evaluating the denominator (and
vice versa) can be performed in parallel. To further increase
the level of concurrency and thus reduce the total calculation
time, we prefer rational approximations for which the degrees
of the numerator and denominator are either the same or differ
by at most one. Note that, unlike polynomial approximation,
the rational approximation requires a divide operation whose
execution time is higher than that of addition or multiplication.
In currently available technology, however, the execution time
of division is sufficiently low (e.g., 12 cycles in ADSP 3212,
24 cycles in Weitek 2264) and thus, the rational approximation
is preferable.

Finally, we have to determine the degrees m and n, and cal-
culate the coefficients of the best rational approximation (i.e.,
the minmax approximation) so that the required accuracy is
achieved. The IEEE floating-point standard [9] does not de-
fine error bounds for the elementary functions (except square
root). We attempt, however, to achieve the same accuracy as
required for the basic floating-point operations, i.e., the error
in round to nearest mode should be less than half of the least
significant bit of the mantissa. (The latter is commonly known
as ulp— unit in the last place.) For the double extended format
this means that the error should be less than 255,

For each elementary function we have examined several
choices of m and n for the rational approximation. Unfor-
tunately, for given m and n there is no analytical method to
calculate the coefficients of the best rational approximation
and numerical methods must be used [6]. These methods do
not always converge and in many cases only “‘nearly optimal”’
rational approximations can be generated. The coefficients for
many rational approximations for various accuracies have been
generated in the past and are tabulated in [7]. To provide
a greater flexibility in selecting rational approximations, we
have developed a program for calculating the required coef-
ficients. The program allowed us to generate rational approx-
imations considering simplicity of implementation (based on
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the hardware model presented in Section II), in addition to
accuracy. Our program is based on the Second Algorithm of
Remez [6], [12] which yields the best rational approximation.
This algorithm, in principle, searches for m + n + 2 points
a <x1 <x32 < - <Xmyn+2 < b for which the relative er-
ror is maximal and determines the coefficients for which the
relative errors in any two adjacent points x; and x;,, have the
same value but opposite signs. For more details the reader is
referred to [6] and [12].

To select the most appropriate rational approximation for
each elementary function we then tested the accuracy of the
rational expressions generated by our program and those de-
rived by Hart ef al. [7]. The accuracy of any rational approx-
imation is affected by errors introduced in the various steps of
the calculation which in turn depend on the precision of the
intermediate hardware operations. Consequently, to determine
the accuracy of a given rational approximation we have simu-
lated the operation of the numerical coprocessor (as presented
in Section II) for several lengths of the internal representation.
This allows us to determine the minimal length of the internal
representation which is required to achieve the desired accu-
racy for a given rational approximation.

Every rational approximation was checked in three lengths
of mantissas: 67, 68, and 69 bits. The IEEE standard adds
3 bits to the intermediate mantissa to enable a correct final
result, namely, the guard, round, and sticky bits. For the ex-
tended double precision format this implies that the length of
the intermediate mantissa should be at least 67 bits. We did
not go beyond 69 bits because of low cost effectiveness where
cost is measured in size of silicon area.

To avoid exhaustive simulation for all possible arguments
we restricted the simulation to several specially selected argu-
ments [4] and randomly selected arguments from the approxi-
mation interval and from other intervals. The computed results
were then compared to the “‘correct” results in the same for-
mat. The specially selected arguments include, for example,
the largest and smallest arguments allowed [4].

The correct results were obtained using the Multiple Pre-
cision (MP) package developed by Brent [2]. This software
package is capable of calculating all basic floating-point oper-
ations and all elementary functions in almost every precision.
The high-precision results produced by this package can then
be rounded to the selected width of the internal coprocessor
operation. The algorithms for elementary function evaluation
in the MP package are based on power series in special subin-
tervals for exp and In, and on Taylor series for tan, sin™!,
and tan~',

When testing the approximation error for random argu-
ments we had to determine the size of the random argument
test set (in the approximation interval). The number 2000 is
recommended in [4], and to check whether it is sufficient for
the high-precision operands in our case, we have examined test
sets consisting of 1000, 2000, and 3000 random arguments in
the approximation interval for the functions sin and In. The
results of this test are given in Table I showing the percentage
of wrong results when rounding to 65 bits is performed. The
conclusion that can be drawn from this table is that when the
number of arguments is increased beyond 2000, the results
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TABLE 1
ERRORS IN ROUND TO 65 BITS FOR DIFFERENT SIZES OF THE RANDOM
TEST SET
Mantissa’s 1000 2000 3000
Function length arguments arguments arguments
sin 67 17.10% 18.55% 18.30%
sin 68 7.40% 9.15% 9.07%
sin 69 5.80% 5.95% 6.07%
In 67 39.80% 43.40% 42.90%
In 68 20.30% 21.65% 21.50%
In 69 9.30% 10.80% 9.93%

change by less than one percent. Consequently, 2000 random
arguments were selected for every elementary function in its
approximation interval.

In what follows, we present in detail the alternatives ex-
amined for the function tan. Similar analysis was conducted
for all elementary functions. The function tan was evaluated
using

2
tan er sz,,,(x )
4 Qn(x?)
The following four sets of coefficients were examined. The
first three are from Hart et al. [7] while the coefficients for
the fourth were generated by our program and appear in the
Appendix.
a) H34—[7] (index 4268), numerator of degree 3 and de-
nominator of degree 4.
b) H43—[7] (index 4258), numerator of degree 4 and de-
nominator of degree 3.
c) H44—([7] (index 4287), numerator of degree 4 and de-
nominator of degree 4.
d) P44—[17], numerator of degree 4 and denominator of
degree 4 (see the Appendix).

where —1 <x <1.

Py(x?)

Qa(x?)

(((@ax® +az)x® + anx® + a)x? +ag
(2 +b)x2 +b)x® +bx>+ by

Figs. 2 and 3 show the error of these four alternatives using
67 and 68 bit mantissas. The error in these figures is normal-
ized by 27%. Thus, a normalized error of —0.25 in Fig. 2
means that the calculated error was smaller by 0.25-2~%
than the correct value. In this figure, the mantissa is 67 bits
long and consequently, the smallest (nonzero) normalized er-
ror is 277 /27% = (.125. From Fig. 2 we can see that the
errors using all four alternatives in 67 bit mantissas exceed
0.5.27% =275, Since in addition to the error within the
approximation interval we should also expect errors in the ar-
gument reduction process, we decided to examine the use of
68 bit mantissas.

In Fig. 3, we see that the smallest error in 68 bit mantissa
is achieved by the rational expression P44. Its worst case is
2766 and it was, therefore, chosen for approximating tan. The
68 bit mantissa satisfies our demand for accuracy and there is
no need to further increase the number of mantissa bits.

P44 =x -
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We would like to emphasize that there is only a slight im-
provement to the accuracy, achieved by rational expressions
with higher degrees of the numerator and the denominator.
This is due to the fact that higher degrees require more oper-
ations that in turn may increase the error.

Similar tests were conducted for all elementary functions.
For each function we have generated, through our program,
coefficients for several rational approximations. In all cases,
we have attempted to select equal degrees for the numerator
and denominator to exploit the parallelism between the mul-
tiplier and adder in the numeric coprocessor. Also, we made
an effort to use the same degrees of numerator and denomina-
tor for as many functions as possible to reduce the number of
microcode routines that have to be added for the evaluation
of the elementary functions. We then compared the accuracy
of the approximations generated by our program to that of
the corresponding rational approximations in [7]. Finally, the
rational approximations yielding the smallest errors have been
selected and their errors (for the functions In, sin™!, and 2%
in 67 and 68 bit mantissas) are shown in Figs. 4-6. Here too
the error is normalized by 2~%. For the functions sin, cos,
tan, and In rational approximations with degree 4 in the nu-
merator and in the denominator were selected. For the inverse
trigonometric functions we had to select approximations with
degree 7 in the numerator and in the denominator.

The general expressions for the above functions are shown
below and the appropriate coeflicients appear in the Appendix.

2
sin 17rx sz;;(xz) where —1 <x <1
4 Qa(x?)
P 2
COS —TX =~ 4(x2) where —1 <x <1
4 Q4(x7)
Py(z? -1 1
lnxzz—Lzz) wherez =~ ——: — <x <2
Q4(z%) x+1 2
2
sin”! x sz7(x2) where — L <x < L
Q7(x%) 2 2
1 —1 1 1
cos™ X =— —sin" X where — — <x < —
2 2
P 2
tan”' x = 7(x2) where — 1 <x <1.
Q7(x%)

For the functions sin, cos, and 2*, even an implementation
with 67 bits of mantissa yields the desired accuracy. The error
of sin™! (shown in Fig. 5) is the worst of all the functions.
It reaches almost 279 in 68 bit mantissa.

The function 2* for which none of the above possibilities
is suitable can be implemented using either a rational approx-
imation of degree 5 in the numerator and the denominator, or
a different special form [7]. The first alternative is

2% n Ps(x)
Qs(x)

The error of this rational approximation is shown in Fig. 6.

where 0 < x <0.5.
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Fig. 2. Error distribution for the four rational approximations for tan in 67
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A faster implementation was presented in [7]:

2% o D3O +XPa(x?)
Q3(x?) — xPs(x?)

and its error distribution is very similar to the one shown in
Fig. 6. The function 2* is often implemented since it allows
the calculation of other exponential functions. For example,
to evaluate e” we find an integer N and a fraction x so that
y log, e = N 4+ x and then e¥ = 2V+* =2V .2% The term
2V is incorporated into the exponent field of the floating-point
number. If the resulting fraction x is larger than 0.5 we use

where 0 < x <0.5

40 T T T T T
35
30
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DISTRIBUTION
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...o.. 67 bits
...%. 68 bits 7

15 ~

10 -

R ,
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Fig. 5. Error distribution for the sin—! function in a) 67 bits and b) 68
bits.

instead e =2N*x = 2N .205.2~05 requiring the precal-
culation of the constant /2.

Considering the results for all the elementary functions we
recommend the length of 68 as the length of the mantissa for
intermediate results. This length is essential for the functions
sin™!, tan, and In to achieve the required accuracy even with-
out considering possible errors due to the reduction process.
This compares well to the 67 bit data path in the Intel 8087
which uses the Cordic algorithm and guarantees an error not
to exceed 2793 [10].

When testing the accuracy of all the above approximations
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we have also investigated how the error is distributed in the
approximation interval. We divided the approximation inter-
val of every function into ten equal subintervals. In every such
subinterval, 200 random arguments were evaluated. For most
of the functions, approximately uniform distribution was ob-
served. For sin™! the errors in the last approximation subin-
tervals were more frequent and of larger magnitude than in
the other subintervals.

An example of an error distribution graph of the sin func-
tion is depicted in Fig. 7. In this graph we can see the percent-
age of errors in the 66th bit. This is the worst error in a test of
2000 arguments in the approximation interval. We also show
the error distribution graph for the function sin~! in Fig. 8.
This graph includes three curves: one for the percentage of
errors in the 65th bit, one for the errors in the 64th, and one
for the errors in the 63rd bit.

IV. EstiMATING THE EXEcuTION TIME

To estimate the execution time of the derived rational ap-
proximations in the coprocessor presented in Section II, de-
tailed microcode routines were developed for all the elemen-
tary functions mentioned above [17]. The execution time (in
clock cycles) of the various basic operations were estimated
based on the execution times of the same operations in the
Weitek 2264 and 2265 arithmetic chips. For example,

T4iv = 24.

Tad =2, Trom =2,

35— T T 1 —’
g %
2.5 4
..... 65-th bit
—~~ 64-th bit
2k — 63-rd bit .
Errors
(percentage)
1.5+ 4
1k
05
ok |
1
2v2
Argument z
Fig. 8. Errors in subintervals for the sin™! function, a) In the 65th bit, b)

in the 64th bit, and c) in the 63rd bit.

In what follows, we estimate the execution time for the
rational approximation of the function tan. As we have seen
in Section III, a numerator and denominator of degree 4 are
needed to achieve the required accuracy with 68 bit mantissa.
The algorithm for calculating tan(«) consists, therefore, of
the following steps.

1) Find an integer N and a fraction x such that « - % =
2N + x. This is useful since

tan (o) = tan (Lrix) = tan (11r(2N +x))
4 7 4

tan (%wx)

tan(a) = -1

tan (%WX)

and consequently

if N is even

if N is odd.
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2) Calculate x2.

3) Calculate P4(x?) and Q4(x?) with the appropriate coef-
ficients for tan (see the Appendix). "

4) If N is even then tan(a) = fﬂjﬁ

Qa(x 2)
: _ —Q4x)
If N is odd then tan(a) = m.

In step 3), which is repeated in the procedure for other ele-
mentary functions, we take advantage of the separate adder and
multiplier in the coprocessor which can operate in parallel.
The two polynomials P4(x?) and Q4(x?2) are evaluated concur-
rently using Horner’s method [6]. Assuming that Ty > Tagq
then the additions are executed in parallel to the multiplica-
tions and the time (in clock cycles) needed to calculate the
two polynomials is

Tpg = 8T mui +Taga + 11T oy

where Ty is the time of a move operation from one register
to the other and is estimated to be one cycle. According to the
microcode routine for tan, the execution time for arguments
in the approximation interval (x € [—=x/4, 7 /4]) is

2r6Tmov + 7Tadd + 1(TI‘mul + Tdiv + 2Trem + 3Ttest

where T'rer is the time to calculate the remainder x when a
is in the approximation interval and T is the time needed
to test whether a number is zero or positive. These two are
estimated to be 10 and 1 cycle, respectively.

Based on the estimates for the basic operations we estimate
the evaluation time of tan to be 107 cycles. For arguments
in [-27, 2x] one should add 1 cycle because the remainder
operation is longer. Similarly, every doubling of the interval
[—27, 27] adds 1 more cycle.

The execution time of the FTAN instruction in the
MC68881 for an argument in [, 7] is 442 cycles and it
is 450 cycles in the Intel 8087. This is the time from the
end of the input operand conversion (to the internal extended
double precision format) until the calculation is complete. It
does not include the time needed for rounding and exception
handling. We should not, however, compare the 442 (or 450)
cycles to the 107 cycles needed to calculate tan using a ra-
tional approximation, since the Motorola and Intel chips incur
extra overhead due to their extended functionality. Instead,
we may compare the 107 cycles to the number of cycles re-
quired by a direct implementation of a Cordic type algorithm.
A single Cordic iteration for tan takes at least 3-4 cycles for
a total of 201-268 cycles for 67 iterations. For example, a
pipelined implementation of a Cordic algorithm reported by
Naseem and Fisher [11] requires 3k + 2 cycles where k is
the number of mantissa bits. This number of cycles is con-
siderably higher than our estimate of 107 cycles. We may
conclude, therefore, that if the implementation of a numerical
coprocessor with separate ALU and multiplier/divider array
within a single chip is feasible, then the use of a rational ap-
proximation for the tan function can speed up substantially
its evaluation. Note, however, that this conclusion holds only
for high-precision floating-point formats. For single-precision
floating-point numbers (i.e., 32 bits), the time to evaluate the
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rational approximation is still close to 100 cycles while the
execution time of a Cordic type algorithm reduces to between
72 and 96 cycles.

Similar calculations were done for the other elementary
functions but the details of these are not presented here for
the sake of brevity. For all of them, the estimated execution
tiime was very close to that of the tan function, i.e., around
100 cycles.

V. CoNCLUSIONS

The possibility of evaluating elementary functions us-
ing rational approximations for high-precision floating-point
operands was examined in this paper. Our results show that
high accuracy can be achieved with properly selected ratio-
nal approximations. Moreover, we can expect faster evalu-
ation of elementary functions for high-precision operands if
we take advantage of the currently available technology and
design a numerical coprocessor with separate ALU and mul-
tiplier/divider array.
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APPENDIX

THE COEFFICIENTS FOR THE RATIONAL APPROXIMATIONS

This Appendix contains the coefficients that were produced
by our program for the analyzed elementary functions. The
coefficients for arctan were taken from [7] and are not repro-
duced here.

SINE
The accuracy: 81.35 binary digits.
1805490264.690988571178600370234394843221

ag =
a; = -164384678.227499837726129612587952660511
a; = 3664210.647581261810227924465160827365
a3 = -28904.140246461781357223741935980097
ay = 76.568981088717405810132543523682
by = 2298821602.638922662086487520330827251172
b = 27037050.118894436776624866648235591988
b, = 155791.388546947693206469423979505671
by = 540.567501261284024767779280700089
by = 1.000000000000000000000000000000
COSINE

The accuracy: 75.84 binary digits.

a = 1090157078.174871420428849017262549038606
a; = -321324810.993150712401352959397648541681
a; = 12787876.849523878944051885325593878177
as = -150026.206045948110568310887166405972
ay = 538.333564203182661664319151379451
bo = 1090157078.174871420428867295670039506886
b = 14907035.776643879767410969509628406502
b, = 101855.811943661368302608146695082218
by = 429.772865107391823245671264489311
by = 1.000000000000000000000000000000
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TANGENT
The accuracy: 77.93 binary digits.
ap = 4131609.170779463612831613697609688664
a; = -349892.446189827379456194174502611160
a = 6171.941880398193854088770105983857
as = -27.952794872964249982803224481000
a = 0.017510830543558045518906756867
by = 5260528.179626867271082913544645032475
b = -1527149.650428423247512005797880730197
b, = 54978.802201914769788825792025978581
by = -497.600205366786822141899530956655
by = 1.000000000000000000000000000000
LN
The accuracy: 80.26 binary digits.
ap = 75.151856149910794642732375452928
a; = -134.730399688659339844586721162914
az = 74.201101420634257326499008275515
a3 = -12.777143401490740103758406454323
ay = 0.332579601824389206151063529971
by = 37.575928074955397321366156007781
b = -79.890509202648135695909995521310
b, = 56.215534829542094277143417404711
by = -14.516971195056682948719125661717
by = 1.000000000000000000000000000000
22
The accuracy: 71.72 binary digits.
a = -206059.513651462417300603206105762608
a = -72102.257795588230525186324857176045
a; = -11240.028765106747749286285665814234
az = -989.027846890636944551735963387845
ay = -49.989827240728613599573203414321
as = -1.18920711500272106594 7160567580
by = -206059.513651462417300687842396046361
b = 70727.313119476505073640760970893559
by = -10763.509252270376185248801034299421
by = 918.242504088198610896034362131433
by = -44.536266525881179356272752744143
bs = 1.000000000000000000000000000000
ARCSINE
The accuracy: 68.3 binary digits.
a = -972.782207709228341729207991593839
a; = 3498.396650592600021542310184239229
a; = -4995.838598943480786230053038853147
as = 3590.017905004386232588075532760924
ay = -1352.474204071536636000843326813008
as = 250.605158021444036208513586953088
ag = -18.439912469367107937253306659026
ay = 0.262076543208321715062090502861
by = -972.782207709228341724927954794523
b = 3660.527018544138075678241082220227
b, = -5532.967769789311359970447189154427
by = 4281.067450708323510202191440005698
by = -1784.874232887006601291990742511937
bs = 384.5609375479919560224 73273827223
bs = -36.698030111097499118818314478572
by 1.000000000000000000000000000000
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