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Abstract —An efficient initial approximation method for multiplicative
division and square root is proposed. It is a modification of the
piecewise linear approximation. The multiplication and the addition
required for the linear approximation are replaced by only one
multiplication with a slight modification of the operand. The same
accuracy is achieved. The modification of the operand requires only a
bit-wise inversion and a one-bit shift, and can be implemented by a
very simple circuit. One clock cycle may be saved, because the
addition is removed. The required table size is also reduced, because
only one coefficient instead of two has to be stored.

Index Terms —Computer arithmetic, division, initial approximation,
linear approximation, reciprocal, square root.
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1 INTRODUCTION

WITH the increasing availability of high-speed multipliers, multi-
plicative methods have become attractive to the fast division and
square root. In general, such methods adopt an initial approxima-
tion and improve it by a converging algorithm, e.g., Newton-
Raphson method and Goldschmidt’s algorithm [1], [2]. Efficient
initial approximations reduce the number of iterations of con-
verging algorithms and achieve high-speed division and square
root. In this paper, we focus on generating initial approximations
for multiplicative division and square root on the mantissa of a
floating point number.

For the initial approximation, look-up tables are commonly used.
The simplest way is directly reading an initial approximation
through table look-up using some most significant bits of an oper-
and as the index [3]. Another efficient method is a piecewise linear
approximation, which requires a multiplication and an addition [4].
The two coefficients of the linear function are read out of a look-up
table. The approximation is about twice as many bits of accuracy as
that achieved by the direct approximation, when the same bits of an
operand are used as the index. Therefore, the multiplication and the
addition, as well as the increase of the table size, for the approxima-
tion are worth the first iteration of a quadratic converging algorithm,
such as Newton-Raphson’s, which requires two multiplications for
division or three multiplications for square root.

In this paper, we propose a new initial approximation method,
which is a modification of the piecewise linear approximation. We
replace the multiplication and the addition required for the linear
approximation by one multiplication with a slight modification of
the operand. The same accuracy is achieved. For the modification
of the operand, we need only a bit-wise inversion and a one-bit
shift of a part of it. These operations are also required in the con-
verging algorithms and can be performed by a very simple circuit.

One clock cycle may be saved, because the addition is removed.
Furthermore, the required table size is also reduced, because only
one coefficient instead of two has to be stored.

In the following, we will propose a new initial approximation
method for division and for square root, in Sections 2 and 3, re-
spectively. In Section 4, we will compare it with conventional
methods.

2 INITIAL APPROXIMATION FOR DIVISION

Newton-Raphson method and Goldschmidt’s algorithm are widely
used for multiplicative division [1], [2]. They need an initial ap-

proximation to the reciprocal of a given divisor Y = [1.y1y2 … yn],

where 1 £ Y < 2.
The piecewise linear approximation for reciprocal adopts a lin-

ear function -A1 ¥ Y + A0 [4]. The two coefficients A1 and A0 are
read through table look-up addressed by the m most significant
bits of the divisor Y, i.e., [y1y2 … ym]. The look-up table keeps the
coefficients for 2m intervals of Y. One multiplication and one addi-
tion are required.

Differentiating the error function e Y A Y A Yb g = - ¥ + -1 0
1

yields ¢ = -e Y A
Y

b g 1
12 . Hence, the positive maximum error is

e Y E A A
Ab gmax

= FH IK = -1
0 1

1
2 . To minimize the worst absolute

error in each interval [p, p + 2-m), where p = [1.y1y2 … ym], the er-

rors at both endpoints, i.e., e(p) and e(p + 2-m), should have the

same value and should be equal to -e(Y)max. Consequently, the
coefficients should be
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when calculations are carried out with infinite precision. A1 and A0

satisfy 1
4 1 1< <A  and 1 < A0 < 2, respectively. When t1 and t0 bits

are kept for A1 and A0, respectively, in the table, A1 and A0 have

the forms 0 1
1

2
1 1

1
. a a atL  and 1 1

0
2
0 0

0
. a a atL , respectively. The table is

of size 2m ¥ (t1 + t0) bits. The total error eL, considering the errors

due to storing only t1 and t0 bits of A1 and A0, respectively, satisfies

eL
m t t

p
Y< ◊ + ◊ +- - - - - -1

2 2 23
2 3 1 11 0 .                      (2)

The last two terms are from the rounding errors.

Since the upper part of Y is always p in the interval [p, p + 2-m),

-A1 ¥ Y + A0 can be rewritten as -A1 ¥ q + ¢A0  where q = Y - p (=

[0.0 … 0ym+1ym+2 … yn]) and ¢A0  = A0 - A1 ¥ p [5]. ¢A0  satisfies
1
2 0 1< ¢ <A . The total error eI, considering the errors due to storing

0018-9340/97/$10.00 ©1997 IEEE

————————————————

• M. Ito is with Hitachi Ltd., Kokubunji 185, Japan.
• N. Takagi is with the Department of Information Engineering, Nagoya Univer-

sity, Chikusa-ku, Nagoya 464-01, Japan. E-mail: ntakagi@nuie.nagoya-u.ac.jp.
• S. Yajima is with the Department of Information Science, Kyoto University,

Kyoto 606-01, Japan.

Manuscript received June 16, 1995; revised July 24, 1996.
For information on obtaining reprints of this article, please send e-mail to:
transcom@computer.org, and reference IEEECS Log Number C96306.



496 IEEE TRANSACTIONS ON COMPUTERS,  VOL.  46,  NO.  4,  APRIL  1997

only ¢t1  and ¢t0  bits of A1 and ¢A0 , respectively, satisfies

eI
m m t t

p
< ◊ + ◊ +- - - - ¢ - - ¢ -1

2 2 2 23
2 3 1 21 0 .                   (3)

¢t1  may be about the half of t1. When we prepare a dedicated mul-
tiplier for initial approximation, its size may be smaller. We refer
to this method as improved linear approximation method.

Now, we propose a new initial approximation method. We can
find the following relation between A1 and A0 in (1):

A A p m
0 1 2 2~ .- ¥ + -e j                             (4)

Therefore, A1 ¥ (2p + 2-m - Y) produces almost the same value as

-A1 ¥ Y + A0. This means that one multiplication B Y1 ¥ $  achieves

the same accuracy, where B A1 1
~-  and $Y p Ym= + --2 2 .
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0 1= , we can form $Y  by only a bit-wise inversion

(complementation) of the lower part of Y. (We ignore the last term 2-n.)
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B1 should be
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We use an m-bits-in t-bits-out table for B1. The table is of size
2m ¥ t bits. The total error eP considering the rounding error of B1
satisfies

eP
m t

p
Y< ◊ + ◊- - - -1

2 23
2 3 1.                            (7)

The proposed method with an adequate t produces an ap-
proximation with the same accuracy as the conventional linear
approximations, without addition. Furthermore, the required table
size is also reduced, because only one coefficient instead of two
has to be stored. The modification of the operand is only a bit-wise
inversion. Note that a bit-wise inversion is also required in New-
ton-Raphson’s and Goldschmidt’s iteration for subtracting an in-
termediate result from 2. Note also that we do not need whole $Y
but need down to about the tth position of $Y .

Fig. 1 illustrates an implementation of the proposed method.
The required hardware is a ROM of size 2m ¥ t bits and an operand
modifier which consists of only t - m inverters. Note that the oper-
and modifier may be a modification of the complementer which is
used for the converging algorithms. No other dedicated hardware
is required when we use an existing multiplier which is also used for
the converging algorithms. When we prepare a dedicated multiplier
for initial approximation, its size may be (t + 1)-bits by t-bits.

Fig. 1. An implementation of the proposed method for reciprocal.

We can increase the accuracy of the approximation by adding

B0 to B Y1 ¥ $ , where B0 is read from another table indexed by both
an upper part of p and that of q. Another table look-up and addi-
tion are required. We have discussed this method in [6] and [7]. (In

[7], A1 is used instead of B1.) This method may be efficient in a
system which has a multiply-adder.

3 INITIAL APPROXIMATION FOR SQUARE ROOT

In square root, X  or 2X  is calculated accordingly as the expo-
nent part of the original floating point number is even or odd,
where X = [1.x1x2 … �xn] and 1 £ X < 2.

Newton-Raphson method for calculating the square root recip-
rocal and Goldschmidt’s algorithm are widely used for multipli-
cative square root [1], [2]. They need an initial approximation to
the square root reciprocal of a given operand, i.e., X or 2X.

The piecewise linear approximation method for square root re-
ciprocal adopts a linear function -C1 ¥ X + C0. (When the exponent
part is odd, 2X is used instead of X.) The two coefficients C1 and C0
are read through table look-up addressed by the (m - 1) most sig-
nificant bits of X, i.e., [x1x2 … xm-1], together with the least signifi-
cant bit of the exponent part. From similar consideration to the
case of reciprocal, C1 and C0 for the interval [u, u + 2-m+1) should
be
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C1 and C0 for the interval [2u, 2u + 2-m+2) should be the values that

obtained by substituting 2u and m - 1 for u and m in (8), respec-

tively. When t1 and t0 bits are kept for C1 and C0, respectively, in the

table, C1 and C0 have the forms 0 0 1
1

2
1 1

1
. c c ctL  and c c ct1

0
2
0 0

0
. L , respec-

tively. (We assume 2C1 is stored instead of C1 for [2u, 2u + 2-m+2).) The

table is of size 2m ¥ (t1 + t0) bits. The total error dL considering the

rounding errors of C1 and C0 satisfies



IEEE TRANSACTIONS ON COMPUTERS,  VOL.  46,  NO.  4,  APRIL  1997 497

d L
m t t

u u
X< ◊ + ◊ +- - - - -3

2 2 22
2 4 21 0 .                      (9)

The table size for C1 may be reduced to about the half, as the case

of reciprocal. The approximation function is rewritten as -C1 ¥ v + ¢C0

where v = X - u (= [0.0 … 0xmxm+1 … �xn] ) and ¢C0  = C0 - C1 ¥ u. The

total error dI, considering the errors due to storing only ¢t1  and ¢t0

bits of C1 and ¢C0 , respectively, satisfies

d I
m m t t

u u
< ◊ + ◊ +- - - + - ¢ - - ¢ -3

2 2 2 22
2 4 1 2 21 0 .              (10)

Now, we propose a new initial approximation method. We can
find the following relation between the two coefficients C1 and C0
in (8).

C C u m
0 1 3 3 2~ .- ¥ + ◊ -e j                                (11)

Therefore, 2 3 3 21
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D1 for the interval [2u, 2u + 2-m+2) should be the value that
obtained by substituting 2u and m - 1 for u and m in (13),
respectively.

We use an m-bits-in t-bits-out table for D1. The table is of size
2m ¥ t bits. The total error dP considering the rounding error of D1
satisfies

d P
m t

u u
X< ◊ + ◊- - - -3

2 22
2 4 1.                         (14)

The proposed method with an adequate t produces an
approximation with the same accuracy as the conventional
linear approximations, without addition. The required table
size is reduced. The modification of the operand is only a
bit-wise inversion and a one-bit shift which are also re-
quired in Newton-Raphson’s and Goldschmidt’s iteration
for subtracting an intermediate result from 3 and dividing it
by 2.

The required hardware is a ROM of size 2m ¥ t bits and an
operand modifier which consists of only (t - m) inverters. (One-
bit shift may be implemented by wiring.) No other dedicated

hardware is required when we use an existing multiplier which is
also used for the converging algorithms.

We can increase the accuracy of the approximation by adding

D0 to D X1 ¥ $ , where D0 is read from another table indexed by both
an upper part of u and that of v [6].

The piecewise linear approximation may directly produce X
or 2X  with single-precision (24-bit) accuracy. The piecewise

linear approximation for square root adopts a linear function E1 ◊ X

+ E0. The two coefficients E1 and E0 for the interval [u, u + 2-m+1)
should be
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E1 and E0 for the interval [2u, 2u + 2-m+2) should be the values that
obtained by substituting 2u and m - 1 for u and m in (15), respec-
tively. When t1 and t0 bits are kept for E1 and E0, respectively, in
the table, the table is of size 2m ¥ (t1 + t0) bits. The total error xL
considering the rounding errors of E1 and E0 satisfies

xL
m t t

u u
X< ◊ + ◊ +- - - - - -1

2 2 22 4 2 21 0 .                    (16)

The table size for E1 may be reduced to about the half, by the
improved linear approximation method.

We can find the following relation between the two coefficients
E1 and E0 in (15):

E E u m
0 1 2~ .- ¥ + -e j                                     (17)
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F1 for the interval [2u, 2u + 2-m+2) should be the value that obtained

by substituting 2u and m - 1 for u and m in (18), respectively.
We use an m-bits-in t-bits-out table for F1. The total error xP

considering the rounding error of F1 satisfies

x P
m t

u u
X< ◊ + ◊- - - -1

2 22 4 1.                             (19)

The proposed method with an adequate t produces an ap-
proximation with the same accuracy as the conventional linear
approximations, without addition. The required table size is
reduced. The modification of the operand is only a bit inversion
and a one-bit shift.

We can increase the accuracy (or reduce m) by adding F0 to

F X1 ¥
⁄

, where F0 is read from another table indexed by both an
upper part of u and that of v [6].
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4 COMPARISON

Table 1 shows a comparison of initial approximation methods for
reciprocal, i.e., the (original) piecewise linear approximation
(“Linear”), the improved linear approximation (“Improved”), the
proposed method (“Proposed”), and the modified version of the
proposed method discussed in [6] (“Modified”), with respect to
the ROM size, the required operations besides table look-up, and
the obtained accuracy. The upper m bits of the divisor Y is used as
the index for table look-up. “Modified” requires two tables in-

dexed by different bits of Y. B1 is indexed by the same m bits as the

other methods and 5
2 4m +  bits are stored. B0 is indexed by the

upper m
2  bits of both p and q and m

2 1+  bits are stored [6]. Note
that the multiplier for “Improved” may be smaller.

Comparisons for square root reciprocal and for square root are
similar to that in Table 1.

The proposed method produces an approximation with the
same accuracy as the conventional linear approximations. Since
addition is removed, one clock cycle may be saved. Furthermore,
the required table size is about the half of that for the original lin-
ear approximation, and about the two thirds of that for the im-
proved linear approximation.

Table 2 compares the table size required by “Linear,”
“Improved,” and “Proposed” for double-precision (53-bit) divi-
sion, with respect to the number of following Newton-Raphson
iterations. (We assume that the reciprocal is computed with 54-
bit accuracy.) Linear approximation methods may directly pro-
duce a reciprocal for single-precision (24-bit) division. For this,

the proposed method requires a table of size 212 ¥ 26 = 104K
bits.

For double-precision square root, the proposed method for

square root reciprocal requires a table of size 26 ¥ 14 = 896 bits when

followed by two Newton-Raphson iterations and a table of size 213 ¥
28 = 224K bits when followed by one iteration. The proposed
method for square root directly produces single-precision square

root by means of a look-up table of size 210 ¥ 24 = 24K bits.

5 CONCLUDING REMARKS

We have proposed a new initial approximation method for
multiplicative division and square root. It requires only one
multiplication with a slight modification of the operand and pro-
duces an approximation with the same accuracy as the conven-
tional linear approximations which require one multiplication and
one addition. One clock cycle may be saved, and the required
ROM size is also reduced.
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TABLE 1
COMPARISON OF INITIAL APPROXIMATION METHODS FOR RECIPROCAL

Method Required ROM size (bits) Required Operations Accuracy (bits)

Linear 2
m

 ¥ ((2m + 3) + (2m + 3)) Mul, Add 2m + 2

Improved 2
m

 ¥ ((m + 3) + (2m + 2)) Mul, Add 2m + 2

Proposed 2
m

 ¥ (2m + 3) OM, Mul 2m + 2

Modified 2 4 2 15
2 2

m m m m¥ + + ¥ +d i c h OM, Mul, Add 5
2
m

Mul: Multiplication, Add: Addition, OM: Operand Modification

TABLE 2
COMPARISON OF REQUIRED ROM SIZE FOR DOUBLE-PRECISION DIVISION (BITS)

Number of following Newton-Raphson Iterations

Method 3 2 1

Linear 2
3
 ¥ (8 + 8) = 128 2

6
 ¥ (15 + 15) = 1,920 2

13
 ¥ (28 + 28) = 448K

Improved 2
3
 ¥ (4 + 7) = 88 2

6
 ¥ (9 + 14) = 1,472 2

13
 ¥ (14 + 27) = 328K

Proposed 2
3
 ¥ 8  = 64 2

6
 ¥ 14 = 896 2

13
 ¥ 28 = 224K


