EE486: Advanced Computer Arithmetic
Homework #4 Solutions (25 pts)

The main purpose of having you do problem 1 and 4 is for you to see the small details that might be
needed. The crucial difference between the two is in the sign of the result and the way the number is padded
to the MSB side.

(6pts) Problem 4.1 - Modified Booth 4 for 2’s complement numbers

Pad the LSB side with one zero, extend the MSB side with as many bits as required (by repeating the MSB)
to make the total number of bits a multiple of 4. If the number of bits is already a multiple of 4 do not
extend it. To understand this extension let us first see the following Lemma.

Lemma 1 If a binary number x is represented in two’s complement form by the bit string £,T,_1 - 1%,
then © = (=1)z,2" + E?_Ol x;2°.

Proof:
e If x is positive, then z,, = 0 and the statement is true by the definition of binary number representation.

e If x is negative, then z,, = 1 and the absolute value of z is equal to the one’s complement of the
TnpTn_1 - %o bits plus one. This means:

n

xr = —(Z(l —z)2  + 1)

=0

|
—

n

= —(1—-z,)2" =) (1-=)20 -1

s
Il
<

n—1 n—1
= 0-) 204> z2 -1
=0 =0
n—1
= —2"+1+ ) 221
i=0
n—1
= (=Dza2"+ ) z:2°

=0

The fact that z,, = 1 in this case was used in the last line above.

This concludes the proof since in both cases, the statement is true.o

Basically, you can think of the MSB of a 2’s complement number as if having a negative value. The
modified Booth recoders also assume that the MSB of each group is having a negative value. So, if the MSB
of the number falls as an MSB of a group in the Booth recoding, the algorithm will work correctly. If on
the other hand, the MSB of the number falls within a group for the Booth recoder, we must do the sign
extension described above. Can you see why this will be correct?

Now with that sign extension done, the following table can be used to perform Booth4



bs by by b1 ¢ vV G
O 0 0 o0 o0]jO0 O
o 0 0 O 1|1 o0
o 0 0 1 0|1 o0
o 0 0 1 1|12 0
o 0 1 0 0|2 O
o 0 1 0 1|13 O
o 0 1 1 0|3 O
0 0 1 1 1 4 0
O 1 0 0 0|4 O
o 1 0 O 1|5 O
o 1 0 1 0|5 O
O 1 0 1 1|16 0
o 1 1 0 0|6 0
O 1 1 0 1|7 O
O 1 1 1 0|7 O
0 1 1 1 1 8 0
1 0 0 0 0|8 1
1 0 0 0 1|-7 1
1 0 0 1 o0|-7 1
1 0 0 1 1| -6 1
1 0 1 0 0|6 1
1 0 1 0 11|-5 1
1 0 1 1 0]-5 1
1 0 1 1 1|4 1
1 1 0 0 0|4 1
1 1 0 0 11|-3 1
1 1 0 1 0]-3 1
1 1 0 1 1| -2 1
1 1 1 0 01|-2 1
1 1 1 0 1/|-1 1
1 1 1 1 0]-1 1
1 1 1 1 11]-0 1

Logic equations for each possibility can be written in terms of the input bits and then they can be used to
select the required bit pattern from the multiplicand or its 3, 5 and 7 times multiples or their complements.
There is no need to really generate the 2, 4 and 6 times multiples since they are shifted versions of the
one, two and three times multiples. As you have labored through the problem, I guess you understand why
high order Booth recoders become cumbersome and have a delay of their own that might offset the gain of
reducing the levels in the pratial product reduction tree. Another big problem is the need for the “hard”
multiples. Redundant Booth 3 and 4 solve to some extent the issue of hard multiples but they are still big
structures that might not be very good from a performance perspective.

For redundant Booth, see the PhD thesis of Gary Bewick (1994), “Fast Multiplication: Algorithms and
Implementation” at:

http://arith.stanford.edu/phds.html



For performance and area comparisons of the different algorithms, see the PhD thesis of Hesham Al-
Twaijry (1997), “Area and Performance Optimized CMOS Multipliers” at the same website. (That is the
website of the dissertations done with Prof. Flynn)

(5pts) Problem 4.4 - Booth 4 for Sign Magnitude Numbers

The easiest way to answer this problem is to use a standard “Modified Booth 4” multiplier as the one
presented in the first problem above and to compute the product of the unsigned magnitudes of both
numbers and determine the sign of the product using S, = S, XOR S;.

The padding to the LSB side remains a single zero. The padding on the MSB side however is different
here. You need to pad as many zeros as required to make the number of bits a multiple of four. If the
number of bits is already a multiple of four you pad an additional group with all zeros. Can you see why you
must do this? Remember that the table presented above assumes the MSB bit of a group to be negatively
valued while the magnitudes are treated as unsigned.

Obviously, another way of dealing with the padding in both problem 1 and here is to design a special
recoder for the LSB and MSB side groups that takes into account the end effects. In practice this is what is
done instead of introducing unnecessary parital products at the MSB side.



(5pts) Problem 4.8 - Using ROMs
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Figure 1: Partial Product Array and Rearranged Product Matrix
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Figure 2: Reducing the PPA with 256*8 bit ROMs



(5pts) Problem 4.11 - Sign Extension Logic
For sign-extended 8 bit numbers represented as:
SS555555SXs X7 X X5 X4 X3X0X;1 X

with X9 = S, this is equal to:

Xo+2X1 + 22X + 22 X3 4+ - + 28X + 2°X + - - + 21 Xy — 215X,
(Xo +2X; +--+) + (21 = 29) Xy — 25 X,

(Xo+--+) — 27X,

= (—Xo)Xs X7 XeX5X4X3X2X1Xo

Il

Thus, the sign extension can be replaced by (—Xy) in the most significant bit required. The problem, then,
is how to represent (—Xy) properly. For the A row, it is clear that at least 2 bits of sign extension are
required for overlap with the B row:

0000(—Ag) Ag Ag Ag Az - - -
0000(—By)BsB7BeBs - - -

Now, —Ag as shown can be rewritten as
_211 + (211 _ 211A9) (1)
However, (2! — 211 4g) is simply the one’s complement of Ag, and this row can be rewritten into two rows:

00 (1) 0 0 0 O
OOA_9A9A9A8A7

Similarly, for the B row, —By can be rewritten as

— _211 + (211 _ 21139)
— (_213 + 212 + 211) + (211 _ 211B9)
— (_213 + 212 + 211) 4 2113_9 (2)

The same procedure follows for the C row and the D row, rewriting each of the (-S) terms using numbers of
larger weights:

Crow : (=24 2™ 4213) 4 (213 — 213(y) (3)
Drow : (=2'6+2')+ (2" —2'5Dy) (4)

If we add up the A through D rows,i.e. equations 1 to 4, we get:
_216 + 215D_g + 214 + 2130_9 + 212 + 211B_g =+ 211A_9 4.
Since the width of the tree is only 16 bits (15-0), we can ignore the term —2'6.

The final result is :



Ay Ay Ay As A7 As A5 Ay A3 Ay AL A
1 By By By Bg By By By By By B Y1
1 Cy Cs Cr C¢ Cs Cy C3 Cy Ci G Ys
Dy Ds D; Ds Ds Dy D3 Dy Di Dy Yy
E: E¢ Es E, E3; E, E E Yy
S5 Sia Si3 Si2 S S So Ss S7 S S5 Sy Sz S2 S1 So

You can refer to appendix A of the PhD thesis of Gary Bewick (mentioned in problem 1) to see a more
general proof. Some of you also pointed to another proof on the webpages of the EE371 class in lecture 11

on multipliers at:

http://www.stanford.edu/class/ee371/lectures.html

That second proof assumes that the whole triangle is full with 1 and sums it to get: 0101011. If any of the
sign bits is not one but rather is a zero, this vector must be rectified by adding one (that is the complement
of the sign bit) at the corresponding location. You end up with the same result.

(5pts) Problem 4.13 - (5,5,4) Implementation

There are many possible solutions to the problem. The best solutions take 4 stages of CSA’s and use 6

counters.



