EE486: Advanced Computer Arithmetic
Homework #3 Solutions (35 pts + 5 pts for the extra problem)

(15pts) Problem 1 - Adder Design and Performance (n=32, r=3)

(5pts) a) Conditional Sum Adder (with 3-bit slice)
C3=Chz+Ces
Cs = Cpg + Ce6Ch3 + Ce6Ce3Co

C30 = Cn3o + Ce30Cnar + Ce30Ce27Cn24 + ... + Cez0Ce27Ce24Ce21 Ce18Ce15Ce12CegCes Ce3Co

Although there are many terms in Cs¢ and a simple AND-OR tree would give 3 levels for the ANDing
and 3 levels for the ORing but since some of the terms are simple they can be combined in the OR tree
earlier and the delay for the whole thing is 5 gate delays instead of 6 gate delays. Look at the discussion of
preferred sites in the canonic adder section in the book.

3 gate delays to calculate C,3 and C,3 (1 for G, P and T, 1 for AND, 1 for OR)
5 gate delays to calculate Csg, Car, Coy, ... Cs
2 gate delays to calculate Cso, Csq, ...

Total Gate Delay = 10

(5pts) b) Single Level Carry Skip Adder (fixed block size = r-1)

The worst path is to ripple through the first group (2 gates per bit for r-1 bits), to ripple through the
most significant group (again 2 gates per bit for r-1 bits) and to skip for the [n/(r — 1)] — 2 groups that are
between them.

Total Gate Delay = 2(r—1)+2(r —1)+2([n/(r—1)] —2)
= A(r—2)+2[n/(r—1)] =4+32=36

(5pts) ¢) Carry Look Ahead (CLA)

Generate p and g 1 gate delay
Generate P’ and G' +2 gate delay, across 3 bits
Generate P" and G" +2 gate delay, across 9 bits
Generate P" and G"' +2 gate delay, across 27 bits
Generate Co7 +1 gate delay (P is early, see below)
Generate C3o +2 gate delay
Generate C3; +2 gate delay
Generate S31 +1 gate delay

Total Gate Delay = 13



Notice that G"' = G4 + P3'GY + Py'P{'Gy, P" = P}/ P/'Fy and Co7 = G"' + P"'Cy

Note also that here you can not directly apply the formula from the book giving the delay as 4[log,.(n)].
In deriving that formula, it was assumed that you pass through (2(number of CLA levels)-1) = 7 levels.
Here we are passing only through 4 levels up the tree to generate Cy; then 2 down the tree to get C3;. We
are also saving one gate at Cy7. The formula thus gives you the upper bound of a CLA adder but you can
do better sometimes like here.



(10pts) Problem 3.2 - Adders

(4pts) a) r = 4 and dot-or limited to 4

The Ling adder is dot-or limited. We need 23 = 8 fan-in for the dot-or, but we only have 4. Therefore, we
can not generate the first level of H; in only 1 gate delay. Instead we need 2 gate delays.

t = [log,n/2]+1+1
[log, 32] + 2
)

For the canonic adder,
delay = 2[log,(n —1)] +2 -6

Since
[log,64] =3 >1

but

n=64 ? 2(4)% - [log,(64—16)]

?7 32-3
64 > 30
and thus 6 = 0. Therefore,
t = 2(3)+2
= 8

(3pts) b) Num of CSA delays to reduce six 32-bit operands

Using a wallace tree, this can be done using 3 levels of CSAs.

(3pts) ¢) FP Add vs FP Mul

There are several reasons why FP add could take more time than FP mul. The dataflow for FP addition
can be very complicated in the worst case: swap operands, subtract exponents, shift smaller operand right,
add mantissas, recomplement, left shift, round, final shift. In the worst case, it is possible for this process
to contain three full-length carry-propagate additions and two full-length shifts, although this case is never
actually seen in practice.

Multiply, on the other hand, is relatively straightforward: generate partial products, reduce partial products
in a tree or array, perform final carry-propagate add, round. Thus, depending on the exact implementation
of both, it is possible for the delay of FP add to be greater than that of FP mul due to its several shifts and
full-length adds.



(5pts) Problem 3.3 - Fast Adder

(2pts) a) Fast Address Generation
One possible solution is to use 12 CSA’s for the lower order 12 bits and 12 half adders for the higher order
12 bits. Then use a CPA to add the carry and sum bits together.

Another solution is to use 12 CSA’s followed by a CPA for the low order 12 bits while a conditional sum
adder is used for the high order 12 bits. The carry out of the low order CPA then selects final output out of
the two outcomes from the conditional sum adder.

(3pts) b) Upper bound Check
2’s complement the upper bound address and add that to the C and S bits of the first solution above. Use
24 CSA’s to reduce the C, S and 2’s Complement of the upper bound. Compute the final CPA and check if
the result is greater than zero.

(6pts) Problem 3.5 - ROMs

Several different designs were possible. Some used the ROMs in the form of (2,2,2,2,2,6) counters as described
in chapter 4 but the better designs in terms of performance used some form of carry-lookahead. The best
was a design (by Alex) which had a delay of 4 ROMs with 10 total ROMs and 2 ROM types.

The first type of ROM took 4 bits of each input and a carry in signal. It produced 4 sum bits and the
group P and G functions. Those group P and G signals are independent of the carry in signal, hence both
memory locations with carry in 0 or 1 produce the same P and G. This fact is important for the delay
estimation later on.

The second type of ROM took 4 of the group P and G together with a carry in signal to produce 4 carry
out signals.

8 ROMs of the first type are in the first row. The second row has 2 ROMs of the second type. One of
those two takes Cy and the P and G from the 4 low order groups of bits to generate Cy,Cg,C12 and Cig
which are fed back to the ROMs in the first row to get the sum bits. Cig is also fed to the second ROM
in the second row together with the P and G from the 4 high order groups of bits to generate Cag, Ca4, Cag
and Css2. Those carries are also fed back to the ROMs in the first row to get the sum bits.

The worst case delay is from one of the low order ROMs in the first row (P and G) to the first ROM
of the second row (Cig) to the second ROM in the second row (any of the carrys) to one of the high order
ROMs in the first row (to get the sum bits). Since P and G are independent of the carry signal, the second
row of ROMs gets its P and G inputs from the first row of ROMs despite the fact that the carries into that
first row are not known till the second row produces them.



(5pts) Extra credit - Adder Design and Performance (n=32, r=3)

Design a fast multiple level carry skip adder with variable block size. (N=48, r=5)

One possible solution of the block sizes is:

Level 0: 1,3,4,4444444443]1
Level 1: 1,4,44,1
Level 2: 1,3,1

The total delay depends on the adder design within each level 0 block. For example, a CLA is faster than a
carry-ripple adder.

Critical Path (carry generate in bit 1 to sum bit in bit 46):
1) Propagate within level 0 blocks
2) Skip through three level 0 blocks

3

)

) Skip through one level 1 block
4) Skip through three level 0 blocks

)

5) Propagate within level 0 block



