EE486—Computer Arithmetic
Homework #2 Solutions (35 pts)

(4) Problem 2.2 - Choosing RNS Moduli

The range 0 to 10000 requires 10 001 distinct representations.

(2) a) If any integer modulus is permitted.
Simply selecting the product of primes gives:

2x3xHxT7Tx11x13=30030> 10001

However, we can reduce the total number of bits needed by using powers of the lower order
primes.
22 x 3% x 5 x 7x 11 =13860 > 10001

(2) b) If only moduli of the form 2% and (2¥) — 1 are allowed then there are several possible
solutions that give minimum delay where

Delay o [log, a(M)] = 5 carries

The best of these solutions choose moduli so that a total of 14 bits are need to represent a
number in this system. Two such solutions are:

3xT7Tx16x31=10416 > 10001
15 x 31 x 32 = 14880 > 10001

(7) Problem 2.5 - Error Checking

(2) a) Any addition of numbers that generates an odd number of carries will work as a
counter example.

Operand | Parity

0101 0
+ 0001 1
0110 | 0 #P(01)=1

(2) b) One method would be to use a residue check. In this method, P(A), P(B), and P(S)
would be the residue mod X of the m bit numbers. For all m bits to affect the residue we
should choose X to be relatively prime to the radix. Therefore, to get the best coverage
using n bits for each residue we should choose X = 2" — 1. Residue checks work in general
because:

(Al+, —, *]B) mod X = ((A mod X)[+, —, *|(B mod X)) mod X

(1) ¢) Since S is an m bit number there are 2™ total representations. Assume that there are
no errors in the calculation of the checksum. There are at most [2™/X| values which will
give the same mod X value. There is only 1 correct solution. Therefore, the probability of

an undetected error is as follows:
m

Prob = (Vyw —1)/2™ ~ % (for m > n)

(2) d) We notice from part a that P(P4+ Pp) # Ps only for the cases where A+ B produces
an odd number of carries. Therefore, we can create a sum check that works properly by
including the parity of the carry bits.

P[P(A), P(B),P(Carry)] = P(S)

Example:
Parity
Carry 0010 1
0101 0
+ 0001 1
0110 0 = P(101)

(3) Problem 2.6 - More Moduli

The next seven factors are as follows:
37 x 41 x 43 x 47 x 7% x 53 x 59

and therefore
M' =9.69 x 10** ~ 2% a(M') = 59

(8) Problem 2.7 - Addition Delay

(3) a) The lower bound for M is
[log, 2 [logg /(M)
[log, 2 [log, 321

[log, 2(5)]
2 gate delays

S S S Sk
vV IV IV IV

2

The lower bound for M’ is

[log, 2 [log, a(M')]]
[log, 2 [log, 597
[log, 2(6)

2 gate delays

~ &+ o+ o+
vV IV IV IV

(3) b) The lower bound for M is

[log, 2 [log, B(M)]]
[log, 2 [logy B(17)]]
[log, 2 [log, 16]]
[log, 2(4)]

2 gate delays

~ & o~ o+ o
vV IV IV IV IV

The lower bound for M’ is

[log, 2 [log, B(M")1]
[log, 2 [log, B(59)]]
[log, 2 [log, 2911
[log, 2(5)]

2 gate delays

S NS N S
IV IV IV IV IV

(2) ¢) The number of gate delays for a ROM lookup for either set of moduli is determined
by the number of bits required to represent the largest residues of the two numbers to be
added. 5 bits are needed to represent the largest residue for M, and 6 bits are needed for
M'. Therefore, L = 10 and 12 address lines for M and M’, respectively. In both cases, we
get the same ROM delay.

ROM delay = 2+ [log, L/2] + |-logr 2L/2-|
= 2+2+3
= T gate delays

(8) Problem 2.8 - ROM vs Adder

(3) a) A lookup table for z will use the two 8 bits values for z and y as address bits, so that
L=16 address lines.

ROM delay = 2+ [log, L/2] + [logr 2L/2-|

= 2+ [log, 8] + [log4 281
24244
= 8 gate delays
(3) b) Table look-up to find 1/z will have only L=8 address lines.
ROM delay = 2+ [log, L/2] + [logr 2L/2-|
= 2+ [log, 4] + |-log4 24-|
= 24+1+2
= b gate delays

And we must add the delay for an 8 bit adder.
t = 4]log, 2n]
t = 4[log,2(8)]
t = 8gate delays
Total delay = 5 4+ 8 = 13 gate delays

(2) ¢) Compare the delay functions from part a and b ignoring ceiling function effects.

2 +log, n+1log, 2" < 2+log,(n/2) + log, 2"/ + 4log, (2n)

log,n +nlog,2 < log,n+log,1/2+ n/2log, 2+ 4(log, 2 + log, n)
(n/2)log,2 < 4log,n+log,1/2+ 4log, 2
n/4 < 4logyn+1.5
n < 16log,n+6
n < b1 bits

(5) Problem 2.11 - Cast Out 8’s

This algorithm is really just casting out 9’s in disguise. Assume we are adding two decimal
numbers A and B with digits a; and b; to form the sum S. First we show that this algorithm
for adding up the digits of the numbers and replacing 8’s by -1 gives the same result as

taking the mod 9 of the numbers.
Amod9 = (Za;10°)mod9 = [2(a;10° mod 9)] mod 9

Amod9 = [2((a;mod9)(10°mod 9))]mod 9
Amod9 = [%((a;)(10mod9)*)] mod9
Amod9 = [3a;Jmod9 = [X(a; —9)]mod9

4

Therefore, this algorithm gives the mod 9 of each number and since:
(Amod X + Bmod X)mod X = Smod X

This checksum algorithm will always work.

