EE486—Computer Arithmetic
Homework #1 Solutions (35 pts)

(3p) Problem 1.2

% =Q+ % where Q is the quotient and R is the remainder. Assume that D is not zero.

(1) case 1: (N >0) = Q; =@ and R, = R,

(0.5) case 2a: (N <0, D >0and Rm=0)= Qs =Q, and R, = R,,

(0.5) case 2b: (N<0,D>0and Rm >0)=Qs=Qn+1and Ry=R,, — D
(0.5) case 3a: (N <0, D<0and Rm=0)= Qs =Q, and R, = R,

(0.5) case 3b: (N<0,D<0and Rm>0)=Qs=Q, —1and Ry=R,,+ D

Moral of the story: always look for the limiting cases.

(6p) Problem 1.9

In the following, the numbers (a, b, ¢) themselves are rounded first according to the statement
of the problem. Then, the operations are rounded to give us the maximum and minimum
value of the result.

(3) Case 1: If b and c are of the same sign their product will subtract from s. For s,,,, we
will want to reduce their magnitude, and for s,,,;, we want to increase their magnitude.

Smaz = A(Aa’ - V(T(b) X T(C)))
Smin = V(Va — A(A(D) X A(c)))

Note that for s,,., we used (T'(b) x T(c)). This helps us to combine the case for both
numbers being positive or both being negative. If we insist on using A and 37 only
then we must split this formula into (Ab x Ac) for b and ¢ negative and (s7b x v/¢) for
b and c positive. Similarly for s,,;, and for the second case below.

(3) Case 2: If b and c are of opposite signs their product will add to s. For .4, we will
want to increase their magnitude, and for s,,;, we want to decrease their magnitude.
Notice that to increase the magnitude of a negative number we should use V.

Smaz = A(ACL - V(A(b) X A(C)))
smin = V(Va—A(T(0) x T(c)))

(5p) Problem 1.10 - IEEE Operations
(1) a) Intermediate result (A * B) is below Min but will be carried as a de-normalized number
so that:
(A% B) xC = (1).0100 x 271
(1) b) No intermediate results below Min:
Ax (Bx*(C)=(1).0100 x 27**

Notice that if we did not have denormalized numbers and a flush to zero was used then the
result in b) the same but that in a) would be zero.

(1) ¢) Even though the value of A is shifted out of the mantissa and guard bits, it will still
be retained in the sticky bit and used to round up the last bit of the final result.

A+ B+ C = (1).0000000 1 000000000000001 x 2°
7 14

(1) d) Result is still below Max.
C x D = (1).0100 x 2'*7
(1) e) Result is above Max and due to the rounding it is set to the maximum value.

(2+C)* D= (1).11111---11111 x2'*7

~~

23

(6p) Problem 1.11

(3) a) Assume that zero is handled using a reserved exponent value as in the IEEE standard.
The implied binary point will be to the right of the MSB. Examples: 0.110 = 3/4, 1.010 =
-3/4

(3) b) There are two possible answers to this question depending on how we interpret the
range of the mantissa.

If we use the range exactly as it is written, 1/2 < m < 1, then for a 4 bit mantissa we would
allow the following normalized values:

Mantissa | Value
0.101 5/8
0.110 3/4
0.111 7/8
1.001 -7/8
1.010 -3/4
1.011 | -5/8

We note that all the positives are of the form 0.1XX, and all the negatives are of the form
1.0XX. Therefore, we can use a hidden bit technique where the MSB bit is assumed to be
the opposite of the first bit of the fraction.

However, this range means that there is no way to represent the numbers 1/2 or -1/2.
The mantissa range should probably be 1/2 < m < 1. If we use this range then the following
normalized values are allowed:

Mantissa | Value
0.100 1/2
0.101 5/8
0.110 3/4
0.111 7/8
1.001 -7/8
1.010 -3/4
1.011 -5/8
1.100 -1/2

Because the value -1/2 does not fit the form 1.0XX, we can not use the system described
above, and can not use a hidden bit.

(6p) Problem 1.12

More than one guard bit would only be required if in a single subtraction there was more
than one right shift in the align phase and more than one left shift during post-normalization.

Assume the A and B are the same sign (otherwise we are performing addition), and let
| A|>|B|. There are 4 cases that need to be checked:

e If no exponent aligning is required, then |A|>|B|> 1/2 | A|. The range of results
after the mantissa subtraction is then 0 <|A — B|< 1/2 | A|. This implies that at
least one normalizing left shift will be required, with the possibility of a full mantissa
left shift. However, because there was no initial aligning right shift, no guard digits are
required.

e If a one-bit aligning right shift is required, then the range of the operands is
|A|>|B|>1/4|A|. The range of results after the mantissa subtraction is then
0 <|A-—B|< 3/4 | A|. Here, too, there is the possibility that due to massive
cancellation, a full-mantissa left shift may be required. But because the initial aligning
right shift was only one bit, one guard digit is sufficient to maintain precision.

o If two aligning right shifts are required, then the range of the operands is
1/2|A|>|B|>1/4|A|. The range of results after the mantissa subtraction is then
1/2|A|<|A—-B|<3/4|A|. Because | A — B| is always greater than 1/2 | A|, at
most a one bit normalizing left shift is required, and one guard digit is sufficient to
maintain precision.

e In general, if n right shifts are required with n > 1, then 1/2"7! |A|>|B|, and after
the mantissa subtraction |4 — B|> (1 —1/2""')|A|>1/2|A|. Therefore, whenever
more than a one bit aligning right shift is required, at most a one bit normalizing left
shift will be required, and one guard digit will always be sufficient to maintain precision.

(4p) Problem 1.13

Part | S | significand | change to exp
A |1 1.000 -4
B |0 1.011 +1
CcC |0 1.000 +2
D |1 1.100 +1

(5p) Problem 1.14 - RP Rounding Table

For this problem treat A as being added directly to the LSB (L). not to the guard bit (G).
It makes no difference whether the result is even or odd, so we do not need the value of L.

Sign | G | S Action A
X 0 | 0 | Exact result. No rounding | 0
0 0 | 1 | Positive, round up mantissa | 1
0 1 | X | Positive, round up mantissa | 1
1 X | X | Negative, truncate G and S | 0

