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Abstract

A technique for computing monotonicity preserving
approzimations Fg(z) of a function F(x) is pre-
sented. This technique involves computing an exira
precise approzimation of F(z) that is rounded to
produce the value of Fy(z). For example, only a
few extra bits of precision are used to make the
accurate iranscendential functions found on the
Cyriz™  FasMath™ line of 80387 compatible
math coprocessors monotonic.

1 Introduction

The IEEE Standard for Binary Floating-Point
Arithmetic [1] is a landmark in the field of com-
puter arithmetic. This standard establishes the
formats used to store floating-point numbers and
defines the results that must be returned by the
fundamental mathematical operations of addition,
subtraction, multiplication, division, square root,
and remainder.

This standard, however, omits any discussion of
what should be returned as the value of trans-
cendental functions like the sine or the logarithm.
One reason for this omission is that no simple algor-
ithms that yield correctly the rounded value of
these functions are known. It is therefore natural
to focus on easily computable approximations of
these functions that preserve their important pro-
perties.

This paper shows that monotonic approximations
of the sine, cosine, tangent, arctangent, exponen-
tial, and logarithm, on restricted domains, can be
derived by computing extra precise approximations.
For example, an approximation of the sine function
on [-m/4,7/4] that is accurate to 66 bits of precision
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will necessarily be monotonic when rounded to 64
bits of precision. We have used this technique to
establish the monotonicity of a Cyrix FasMath
coprocessor’s polynomial based approximations of
transcendental functions [2]. Since this technique
does not depend on how the approximation is
determined, then it also can be applied to approxi-
mations derived by other means, e.g., CORDIC
based approximations.

2 Machine Numbers

The IEEE Standard [1] defines four floating-point
number formats: single basic, single extended,
double basic, and double extended. Within a given
format the representable numbers can be described
as

x = (-1)° 28 (bgebyby -+ by ;)

wheres=0or 1, E . <E<E b;=0or 1.

max’
We consider exclusively the situation where
arguments, and the approximate values of
transcendental functions, are representable as dou-
ble extended format numbers (machine numbers).
Math coprocessors compatible with the 80387 math
coprocessor use a double extended format with
E . = +16383, E . = — 16382, p = 64.

Of particular interest are the following two classes
of machine numbers: denormalized numbers (includ-
ing zero) and normalized numbers. Consecutive
nonnegative denormalized numbers m < m have
the form

m:(l) 2-16445 and M =m + 2—16445

263.

where I is an integer that satisfies 0 <1 < 2°°; note

that — 16445 = — 16382 — 63.



Normalized numbers can be classified by the binade
to which they belong; in the binade E consecutive
positive normalized numbers m < m have the form

m=(1+02F and Mm=m+2F~3

where 2%3f and E are integers satisfying
0 <251 < 2% and — 16382 <E < + 16383.

In the following discussion the symbols m, m, and
m will always be used to denote consecutive
machine numbers ordered so that m < m < .

3 Transcendental Functions

Cyrix FasMath coprocessors use polynomial based
methods [3,4,5] to approximate the five basic trans-
cendental  functions: 2¥—1 on [-1/2,1/2],
Log,(1 +x) on [1/N2 — 1,42 — 1], Sin(x) and Tan(x)
on [-r/4,7/4], and ATan(x) on [0,1].

Argument reduction techniques are used to expand
the domain of these basic transcendental functions.
For example, FasMaths can return the approximate
value of 2¥ —1 for arguments in [-1,1]. Given such
an argument it first uses a polynomial based
method to determine the approximate value of
2X/2 _ | and then recovers the approximate value
of 2¥ — 1 via the identity

2% 1= 22— ({2/* -1} +2).

FasMaths can determine the approximate value of
Log,(x) for all positive values of x. To do so it
first determines the value of p for which 27Px
belongs to [1/\22]. Using this value of p
polynomial based methods are used to determine
the approximate value of Logy(1+{2Px-1})=
Log,(2Px). Finally the identity

Logy(x) = p + Logy(2Px)

is used to
Log,(x).

recover the approximate value of

FasMaths can determine the approximate value of
Sin(x), Cos(x), and Tan(x) for arguments x
satisfying |x] <253, To do so they first use the
symmetric partial remainder instruction to deter-
mine the last three bits of the quotient q and the
exact remainder r, with |r| <=/4, when x is
divided by an approximation to /2 with 68 bits of
precision. Once the approximate value of Sin(r) or
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Tan(r) is determined by polynomial based methods
standard trigonometric identities are used to
recover the values of Sin(x), Cos(x), and Tan(x).
These trigonometric identities require the last three
bits of q to determine the appropriate trans-
formation. FasMaths also use the identity

Cos(r) = 1 — Sin?(r)

to recover the approximate value of Cos(r) for
arguments |r| < 7/4 from the approximate value of
Sin(r). A FasMath’s approximation of Sin(r),
Cos(r), and Tan(r) preserve the identities

Sin(x) = — Sin( —x),
Cos(x) = Cos( —x), and
Tan(x) = — Tan( — x).

The use of the symmetric partial remainder
instruction to reduce input arguments also means
that FasMaths return rounded-period approxima-
tions of trigonometric functions.

Finally, FasMaths can determine the approximate
value of ATan(x) for all values of x. To do so it
uses the identities

ATan(x) = — ATan( —x), and
ATan(x) = 7/2 — ATan(1/x)

to reduce a general argument to one between 0 and
1. Once again, an approximate value of /2 with
68 bits of precision is used when the last identity is
applied.

4 Measures of Errors

Two of the most frequently cited measures of error
associated with an approximation F, of a nonzero
number F are the error err and relative error relerr

defined by
F_—F

a

relerr(F,) = F

err(F,)=F,—F, and
Note that F, = (1 +relerr(F,)) F.

We say that F, is a p-bit approzimation of F if the
error amounts to no more than one-half of one bit
in the p-th significant bit of the normalized binary
representation of F.



To understand the implication of this definition let
us suppose that F is a nonnegative normalized
number in the binade E,

F=(1+f)2" where 0<f<l.

If
F,=(1+f+e¢) 25 with
lel < oPti=2P,
then by definition F, is a p-bit approximation of F.
Note that the error in F_ is represented as an error
€ in its significand . If F, is a p-bit approximation

of F, then it follows that

[err(F,) | = || 2F, and

_ el -p
| relerr(F,) | =137 <2P,

Since 1 < 1+f < 2, then we infer that p-bit approxi-
mations that are not (p+1)-bit approximations
have relative errors whose magnitudes lie between
271 and 2°P; the larger the significand the smaller
the associated relative error. We summarize these
observations as follows:

Fact: Let F = & (1+1) 2F belong to the binade E.
If the magnitude of the relative error relerr(F,) in
an approximation F, of F is no larger than
2P /(1 4 1), then F_ is a p-bit approximation of F.

This variation by a factor of 2 in the upper bound
on the magnitude of the relative error of p-bit
approximations, called precision wobble [5], is one
reason why base 2 arithmetic is preferred over base
16 arithmetic. Base 16 (hexadecimal) arithmetic
has a precision wobble 8 times larger than that of
base 2 (binary) arithmetic.

5 Accurate Approximations
Consider an approximation F,(x) of a function
F(x). If F(x) belongs to the binade E(x), then we
can represent F(x) as

F(x) = £ {1 +1(x)} 250,
where 1 <1+f(x) <2 . If we express the error in

the approximation of F(x) by F,(x) as an error ¢(x)
associated with the significand of F(x),
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Fo(x) = £ {1+£(x) +c(x)} 2",
then we find that

| relerr(F,(x)) | = 1| f{-()f(()xl) |

If F,(x) is a p-bit approximation of F(x), then
| e(x)| <2P and so

9P
< —==.
| relerr(F,(x)) | < T4 10
Note that the upper bound on the magnitude of the
relative error of p-bit approximations wobbles not
when the argument x crosses a binade’s boundary,
but rather when the value F(x) crosses a binade’s

boundary.

For each of the five basic transcendental functions,
the upper-most dashed lines in Figures 2 depict the
upper bound on the relative error that must be
satisfied by any 64-bit precise approximation.

6 Monotone Approximations

Informally, the monotonic behavior of an approxi-
mation can be established by making use of three
facts: the monotonic behavior exhibited by the
function, the discrete nature of the machine
numbers, and the accuracy of the approximation.

For example, consider the sine function on [0,7/4].
On this domain Sin(x) is a monotone increasing
function whose slope is never less than
Cos(r/4) ~0.7. If m<m are two consecutive
machine numbers that belong to the binade E, then
Sin(m) and Sin(m) will differ by at least
0.7+(M —m) =~ (0.7) 2563, If the error in the ap-
proximation to Sin(x) is less than half of this
difference throughout the binade E, then the
approximation will also behave monotonically.

This monotonicity argument implies that the ap-
proximation is determined using a higher precision
arithmetic than that required in the final result.
This is relatively easy to achieve for FasMaths
because they implement the full IEEE 754
Standard, and such an implementation requires
that the five basic operations of addition, subtrac-
tion, multiplication, division and square root be
computed internally to a higher precision. A math-
ematically precise version of this monotonicity
argument is presented in the following theorem.



Theorem: Let F(x) be a monotonic function defined
on the interval [a,b]. Let F,(x) be an approxima-
tion of F(x) whose associated relative error admits
the bound

| relerr(F,(x)) | < R

for some constant R < 1. If for every pair m <im
of consecutive machine numbers in [a,b]

| F(m) - F(m) |
Fm)[ + [F(m) |’
then F,(x) exhibits on the set of machine numbers

in [a,b] the same monotonic behavior exhibited by
F(x) on [a,b].

R < R(m,m) = |

Proof: Let m<m be any pair of consecutive
machine numbers in [a,b]. From the assumptions
we find that

| Fo(m) —F(m) | + |F, (M) - F(m) |

= |relerr(F,(m))F(m) | + | relerr(F,(m)) F(m) |
= R {|F(m)| + [F(m) |}

< R(m,m) {|F(m)| + [F(m) [}

< |F(m)—F(m)|.

As illustrated in Figure 1, this inequality shows
that the error bar centered at F(m) with half-width
R|F(m)| containing F,(m), and the error bar
centered at F(m) with half-width R|F(m)| con-
taining F_(m), cannot overlap. Therefore the
function F on [a,b], and the approximation F_ on
the machine numbers in [a,b], must exhibit the
same monotonic behavior. 0

Of course the user never sees the value of the under-
lying higher precision approximation, but only its
value truncated to double extended format. To in-
sure that the value presented to the user also be-
haves monotonically it is important that this trun-
cation to double extended format preserves mono-
tonicity. It is simple to verify that if the trunca-
tion trunc() used is consistently truncation by
rounding or truncation by chopping, then mono-
tonicity is preserved because x <y implies that
trunc(x) < trunc(y). Therefore when the assump-
tions of the previous theorem hold, then the
truncated approximation is weakly monotonic
whenever the function is strictly monotonic.
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Before applying this theorem to the five basic trans-
cendental functions it is convenient to simplify the
expression for R(m,i) as follows. First note that
each of these transcendental functions is monotone
increasing with a single zero at a machine number
mg in the domain. The monotonic behavior of the
approximation at this zero is ensured by the fact
that R < 1, for this fact implies that the approxima-
tion is zero only when the function is zero and that
the approximation has the same sign as the
function. Since mg is a machine number, then the
function has the same sign at consecutive machine
numbers m < m. Therefore, the denominator in
the expression for R(m,f) can be simplified to

|F(@) | + |F(m) | = |F(@)+F(m)| .
Note that
F(m) + F(m) = e
{ 2F(m) {1 +—(i§)F—'(rB)(—m—)}; F(i) > F(m) > 0
9P (m) {1 +F—(I—“2-)F—‘(%(—’T‘—)}; F(m) < F(f) < 0

where the fraction inside the curly braces is a
positive quantity. Using these facts the expression
for R(m,m) can be simplified to yield

_. _|F(m)~F(m)| _ S(m,m)
R(m,m) “'F(m) +F(m)| " 1+5(m,m)
where
() | F(i) — F(m)]

= Zmm{ [ Fm) [, [Fm) ]’

If we interpret S(m,im) as co when either m or m is
equal to mg, and R(m,m) as 1 when S(m,m) is oo,
then this simplified expression for R(m,m) remains
valid when either m or m is equal to my,.

In Table 1 we present the expression for S for each
of the five basic transcendental functions. Note
that the expressions associated with 2¥—1 and
Log,(1 +x) have been split into two cases, one case
for consecutive negative machine numbers
m<m<0 and another case for consecutive
positive machine numbers 0 < m < M. These exp-
ressions for S have been written so that they clearly
show their dependence on the average and dif-
ference of the consecutive machine numbers. Table
2 displays highly accurate approximations of S that
were obtained from the expressions in Table 1.



These approximations of S were obtained by
replacing functions depending on the difference of
two consecutive machine numbers by the first term
of the relevant MacLaurin expansion. The high acc-
uracy of these approximations is a result of the fact
that the difference between consecutive machine
numbers is never greater than 263 on the domains
under consideration.

For each of the five basic transcendental functions,
the dotted line of Figures 2 depict upper bounds on
the relative error that must be satisfied by any
monotonic approximation whose arguments are
obtained from double extended format machine
numbers. These curves were obtained from the
relationship between R and S and the expressions
for S displayed in Table 2.

Note that the upper bounds on the relative error of
approximations wobble when the value of the
function crosses a binade boundary, while the upper
bounds on the relative error of monotonic approxi-
mations wobble when the argument of the function
crosses a binade boundary.

The bottom-most dash-dotted curves Figure 2 de-
pict rigorous bounds on the relative error in the
approximations used by FasMaths. In all cases the
upper bound on this error lies below the bounds
required of accurate and monotonic double extend-
ed format approximations. In particular, note that
the relative errors lie below the curve characterizing
approximations that have full double extended
format (64-bit) accuracy. This observation demon-
strates mathematically that the approximate values
of the basic transcendental functions computed by
a FasMath are either the correctly rounded value or
one of its two immediate double extended format
neighbors.

The appendix illustrates the type of analysis used
to derive the worst case bound on the relative error
of monotonic approximations to Sin(x).

7 Conclusion

The techniques presented in this paper has been
used to prove mathematically that the approxima-
tions delivered by FasMath coprocessors posses the
desirable properties of accuracy and monotonicity
[2]. While FasMaths use polynomial based approxi-
mations, the techniques presented in this paper are
generally applicable to any method for which one
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can compute upper bounds on the relative error of
the approximation. In particular, it could be used
to justify the monotonic behavior of approx-
imations derived by CORDIC based methods.

One interesting application of the relative error
curves depicted in Figures 2 can be described as
follows. The gap between the total error curve and
the bound on accurate approximations suggests
that the larger the gap, the more frequently a
FasMath should return a correctly rounded answer,
see also [6]. By using Brent’s MP package, owners
of FasMaths can verify this claim. Remember,
however, that by the nature of its derivation the
curves depicting the relative error in a FasMath’s
approximations are usually a significant over-
estimate of the actual relative error.

Accuracy and monotonicity results for trans-
cendental functions can also be found in [7].
Recently Dr. W. H. Kahan [8] has informed us that
he has presented at UC Berkeley techniques similar

to those presented in this paper.
Appendix

Since R() is an increasing function of S(), then R()
achieves its least value when S() achieves its least
value. For the sine function the bound on the
relative error of monotonic approximations is given
as

—y _ _m—m

S(m,m) = T Tan(m) -

Consider the case when m < M are consecutive
machine numbers in the binade E. The numerator
of S is constant at value 9E-63  hile the
denominator of S is an increasing function of m.
Therefore within the binade E the least value of S
is assumed at its right endpoint.

The relevant domain for the sine function is
[0,7/4]. The machine numbers in this domain
consist of the whole of the binades with
— 16382 < E < —2 and that portion of the binade
with E = —1 consisting of machine numbers less
than /4. We therefore conclude that

min S(m,m) =

=265 min{

: 1
min ( X ) .
+ = oE+1 \ Tan(x) /7 Tan(r/4)
-16382 < E < -2



Since the function x/Tan(x) is a decreasing
function of x for x < 1/2, then the least value of
x/Tan(x) is achieved at the largest value of x.
Consequently

1/2 1 }
Tan(1/2)’ Tan(r/4)

~ (1.83) 2°%6

— 2-65

min S(m,m) min

266

Tan'( 1/2)

and so to a high degree of approximation

~

min R(m,M) =~ min S{m,f) (1.83) 2766,

It is interesting to note that the informal argument
would have predicted that the most stringent
bound on R(m,m) would occur when m =~ /4
rather than when m = 1/2.
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Figure 1: Relationship between F and I"a.



Function
Sin(x)
Tan(x)
ATan(x)
2X_1
2%
Logo(1+x)

Logg(1+x)

Function
Sin(x)
Tan(x)
ATan(x)
2%-1
2%X_1
Logo(1+x)

Logy(1+x)

Interval
[0,7/4]
[0,7/4]
[0,1]
[1,0]
[0,1]
(510

[O"E_l]

S
mm, S5
Cos(™ ™) ity
1 Sin(M-m)

Cos(m) 2 Sin(m)
m—
ATan(1 T )
2 ATan(m )
__Esmum;mL%Ja)
2~m_q

Q%m Sinh(T™ Log,(2))
1—2“m

—1m
Loge(1 — 1+m

2 Loge(1+m)

Loge(1+ Trm 1)
2 Loge(1+m)

Table 1: Expressions for S.

Interval
(0,7/4]
[0,7/4]
[0,1]
[-1,0]
[0,1]

1
[@_1’0]

[0.N2~1]

2 (14m?) ATan(m)

E

2 Logg(e)( - 1)

m—

2 Log2(e)(1 -2

m-m
2 (1+m) Loge(13)

7 (Tm) Logy(1¥m)

Table 2: Accurate approximations of S.

243



Log2 RelErr

Log2 RelFrr

Log2 RelErr

27x-1

J0r

-71

-0.8

Tan(x)

0.2 0.4 0.6 08 1

0.1 0.2

03 0.4

Sin(x)

0.5 0.6 0.7 0.8

-0k

-71
0

0.1

0.2

03 0.4

0.5 0.6 0.7 08

244

Log2 RelErr
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Figure 2: Relative crror bounds for the transcen-
dental fuctions 2*-1, Log2(1+x), Tan(x), ATan(x),
and Sin(x). In cach graph: (1) thc bottom most
dash-dottcd curve is an upper bound on the relative
error in FasMath approximations prior (0 being
rounded to double extended precision, (2) the top
most dotted curve bounds relative errors of ap-
proximations that are monotonic, and (3) the top
most dashed curve bounds relative errors of ap-
proximations that have 64-bit precision.



