Chapter 3

Addition and Subtraction

3.1 Fixed Point Algorithms

3.1.1 Historical Review

The first electronic computers used ripple-carry addition. For this scheme, the sum at the ith
bit is:

Si=A4;9 B; & C,
where S is the sum bit, A; and B; are the ith bits of each operand, and C; is the carry into the
ith stage. The carry to the next stage (i + 1) is:

Cz'+1 = A;B; + C,(AZ + Bz)

Thus, to add two n-bit operands takes at the most n — 1 carry delays and one sum delay;
but on the average the carry propagation is about log, n delays (see Problem 2 at the end of
this chapter). In the late fifties and early sixties, most of the time required for addition was
attributable to carry propagation. This observation resulted in many papers describing faster
ways of propagating the carry. In reviewing these papers, some confusion may result unless one
keeps in mind that there are two different approaches to speeding up addition. The first approach
is variable time addition (asynchronous), where the objective is to detect the completion of the
addition as soon as possible. The second approach is fized time addition (synchronous), where
the objective is to propagate the carry as fast as possible to the last stage for all operand values.
Today the second approach is preferred, as most computers are synchronous, and that is the
only approach we describe here. However, a good discussion of the variable time adder is given
by Weigel [35] in his report “Methods of Binary Additions,” which also provides one of the best
overall summaries of various hardware implementations of binary adders.

Conventional fixed-time adders can be roughly categorized into two classes of algorithms: condi-
tional sum and carry-look-ahead. Conditional sum was invented by Sklansky [22], and has been
considered by Winograd [37] to be the fastest addition algorithm, but it never has become a
standard integrated circuit building block. In fact, Winograd showed that with (r,d) circuits, the
lower bound on addition is achievable with the conditional sum algorithm. The carry-look-ahead

75

76 CHAPTER 3. ADDITION AND SUBTRACTION

i — 15 14 13 12 11 10 9 8
X; 2 6 7 7 4 1 0 0
Y; 5 6 0 4 9 7 9 4

08 | 07 | 13 | 12 | 08 | 07 | 12 | 11 14 | 13 | 09 | 08 10 | 09 | 05 | 04 | to

083 082 082 081 139 138 095 094 t1

08282 08281 13895 13894 to

082823895 082823894 i3

tq
P — 7 6 5 4 3 2 1 0
X; 2 6 9 2 4 3 5 8
Y; 1 5 1 7 1 6 4 5

04 [03 |12 [11 [11 [10 | 10 09 |06 [05 | 10 [09 | 10 [09 | | 13 | to

042 041 110 109 060 059 103 t1

04210 04209 06003 t2

042096003 t3

08282389442096003 tq

Selector bit = The most significant digit of each number.
The addition performed is:

| o N
oo o
®| o
ol s~
w|w©
®|~ ~
ol o
NNy}
NN
oo o
o= ©
[IENEN)
O =
ooy w
O Ot
w| o

At any digit position, two numbers are shown at to. The right number assumes no carry input, and
the number on the left assumes that there is a carry input. During #1, pairs of digits are combined,
and now with each pair of digits two numbers are shown. On the right, no carry-in, and on the left, a
carry-in is assumed. This process continues until the true sum results (t4).

Figure 3.1: Example of the conditional sum mechanism.

method was first described by Weinberger and Smith in 1956 [34], and it has been implemented
in standard ICs that have been used to build many different computer systems. A third algo-
rithm described in this chapter, canonic addition, is a generalization of the carry-look-ahead
algorithm that is faster than either conditional sum or carry-look-ahead. Canonic addition has
implementation limitations, especially for long word length operands. A fourth algorithm, the
Ling adder [16], uses the ability of certain circuits to perform the OR function by simply wiring
together gate outputs. Ling adders provide a very fast sum, performing close to Winograd’s
bound, since the (r,d) circuit premise is no longer valid.

3.1.2 Conditional Sum

The principle in conditional sum is to generate, for each digit position, a sum digit and a carry
digit assuming that there is a carry into that position, and another sum and carry digit assuming
there is no carry input. Then pairs of conditional sums and carries are combined according to
whether there is (and is not) a carry into that pair of digits. This process continues until the
true sum results. Figure 3.1 illustrates this process for a decimal example.

In order to show the hardware implementation of this algorithm, the equations for a 4-bit slice
can be derived.

The subscripts N and E are used to indicate no carry input and carry input (exists), respectively,

3.1. FIXED POINT ALGORITHMS 7

to the 4-bit slice.

At each bit position the following relations hold:

SNi = A; 0 B;

Cn(iv1) = AiBi } when C; =0,

i = Swi } when C; = 1.

Cr(i+1) = Ai+ B

The following is a shorthand notation (which also assumes each operation takes a unit gate
delay):

P = Ai+B
T, = A;®B; (T;, toggle bit)
For the 4-bit slice : = 0,1,2,3.
Snvo = Ao @ By
Seo = SwNo
Sni = Ai10B @Gy
S;1 = A10B R
Sne = A2 @By ® (Gl + TlGo)
Sg2 = Ay ®By® (Gh+TFR)
Sng = Az @ Bs @ (G2 + ToG1 + ToT1Go)
Sgs = A3® B3 ® (Gs + ToGy + ToTh Po)
One = G3+T3G2 + T3T5G1 + T315T1Go
Ces = G3+T13G2 +T315G1 + T31T1 By

Of course, terms such as G; + T1Gy could also be written in the more familiar form G + P, Gy,
which is logically equivalent. Replacing T; with P; may simplify the implementation.

Thus, the 4-bit sums are generated, and the true sum is selected according to the lower order
carry-in, i.e:

So = SroCo + SnoCo
S3 = Sr3Co + Sn3Co

Figure 3.2 shows the logic diagram of a 4-bit slice (conditional sum) adder.

In general, the true carry into a group is formed from the carries of the previous groups. In
order to speed up the propagation of the carry to the last stage, look-ahead techniques can be
derived assuming a 4-bit adder as a basic block. The carry-out of bit ¢(C;) is valid whenever a
carry-out is developed within the 4-bit group (Cn;), or whenever there is a conditional carry-out
(Cg;) for the group and there was a valid carry-in (C;—4). Using this, we have:

Cy = Cna+CrsCy

78 CHAPTER 3. ADDITION AND SUBTRACTION

83 A3 82 A2 B’ A1 BO AO
| | |
B H j H B
T3\K Q : God O
4 T2
[— LT [i
0w 0 L]e J
L C ‘

-

L1

Y

o i
S
US E3

<
r
ri”{j
m(/)
o
(9]
8

E2

C4 5-3 S2 51 SO

Figure 3.2: 4-bit conditional sum adder slice with carry-look-ahead (gate count= 45).

Cs = Cng+CrsCy
Cs = Cng+ CrsCns + CrsCrsCo
Ci2 = OCni2+ Cg12C3
Ci2 = Cni2 + Cg120n8 + Cg12CE8Cna + Cr12CE8CE4C)
Cie = Cnig+ Cri16C12
Cis = Cni6+ Ce16Cni12 + CE16CE120N8 + CE16CE12CESONat+

Ck16Cr12Cr8CraCo

Note that a fan-in of 5 is needed in the preceding equations to propagate the carry across 16
bits in two gate delays. Thus, 16-bit addition can be completed in seven gate delays: three to
generate conditional carry, two to propagate the carry, and two to select the correct sum bit.
This delay can be generalized for n bits and r fan-in (for r > 4 and n > r) as:

t =5+2[log,_, (Tn/r] = 1)] (3.1)

The factor 5 is determined by the longest C4 path in Figure 3.2. The n bits of each operand are
broken into [%] groups, as shown in the equations for Cny4 and Cgy, but since the lowest order

3.1. FIXED POINT ALGORITHMS 79

YisX(s YaXg YoX, YiXy YoXo
LI O] A
r— r ;CN‘ GATES :
Se Sy | Sg S I Se S E-CHSE Sn g
=]] E: 201 MULTTPLEXOR E
il L =t
. <6 ch

(2 GATE-DELAYS)—

"LOOK-AHEAD"

Figure 3.3: 16-bit conditional sum adder. The dotted line encloses a 4-bit slice with internal
look ahead. The rectangular box (on the bottom) accepts conditional carries and generates fast
true carries between slices. The worst case path delay is seven gates.

group (Cy) is already known, only [2] — 1 groups must be resolved. Finally, sum resolution can
be performed on 7 — 1 groups per AND-OR gate pair (see preceding equation for Cyg), with two
delays for each pair.

If r> 1, then r ~r —1, and if r € n, then
t ~ 3+ 2[log, n]

The delay equation (3.1) is correct for r > 4. Forr =3 or r =2 and n < r, then t = 7. The
cases r = 3 and r = 2 where n > r are left as an exercise.

3.1.3 Carry-Look-Ahead Addition

In the last decade, the carry-look-ahead has become the most popular method of addition,
due to a simplicity and modularity that make it particularly adaptable to integrated circuit
implementation. To see this modularity, we derive the equations for a 4-bit slice.

The sum equations for each bit position are:

So =40 @ By @ Co

Si=A1eB oC in general:

Sy = Ay & By ® Cs S;= A; @ B; & C;
S3=A3 ® B3 ® Cs

l—

80 CHAPTER 3. ADDITION AND SUBTRACTION

The carry equations are as follows:

Ci = AoBy + Co(4p + Byp)

Cy = A1By + C1(A1 + By) in general:

C3 = A2Bs + Cy(As + Bs) Ciy1 = AiB; + Ci(A; + By)
Cy = A3Bs + C3(A3 + Bs)

The general equations for the carry can be verbalized as follows: there is a carry into the (i+1)th
stage if a carry is generated locally at the ith stage, or if a carry is propagated through the ith
stage from the (i — 1)th stage. Carry is generated locally if both A; and B; are ones, and it is
expressed by the generate equation G; = A;B;. A carry is propagated only if either A; or B; is
one, and the equation for the propagate term is P; = A; + B;.

We now proceed to derive the carry equations, and show that they are functions only of the

previous generate and propagate terms:

C1
Cs

Go + PyCy
G+ P Cy

Substitute C into the Cs equation (in general, substitute C; in the C;;1 equation):

Cy = G+ PGy+ PiP,Cy
03 == G2+P202:G2+P2G1+P2P1G0+P2P1P(]CO
04 == G3 +P3G2+P3P2G1 +P3P2P1G0+P3P2P1POCO

We can now generalize the carry-look-ahead equation:
Ciy1 = Gi+PGi-1+PP_1Gi 2+ -+ PP_,...R(Cy

This equation implies that a carry to any bit position could be computed in two gate delays,
if it were not limited by fan-in and modularity; but the fan-in is a serious limitation, since
for an n-bit look ahead the required fan-in is n, and modularity requires a somewhat regular
implementation structure so that similar parts can be used to build adders of differing operand
sizes. This modularity requirement is what distinguishes the CLA algorithm from the canonic
algorithm discussed in the next section.

The solution of the fan-in and modularity problems is to have several levels of carry-look-ahead.
This concept is illustrated by rewriting the equation for Cy (assuming fan-in of 4, or 5 if a Cy
term is required):

Cy =G5+ P3Gy + P3sPyGy + P3sPoPiGy + P3P, Py Py Cy

Group generate = Gj, Group propagate = P}
Cy =G+ PjCy

Notice the similarity of Cy in the last equation to C;. Similarly, the equations for Cy and Cg
resemble those for Cs and Cs.

The CLA level consists of the logic to form fan-in limited generate and progate terms. It requires
two gate delays. With a fan-in of 4, two levels of carry-look-ahead (CLA) are sufficient for 16

3.1. FIXED POINT ALGORITHMS 81

Ay B, A, B, A, By Ao

1
h i
_ 0y dis SO
G3% G2P2 GP1 G‘OPO
1

t L.L 11 Ll 11 i | °
) | C C -

7 = B |

i

Figure 3.4: 4-bit adder slice with internal carry-look-ahead (gate count = 30).

—a

’ ’
P Go

bit additions. Similarly, CLA of between 17 and 64 bits requires a third level. In general, CLA
across 17 to 64 bits requires a second level of carry generator. In general, the number of CLA
levels is:

[log,. n]

where r is the fan-in, and n is the number of bits to be added.

We now describe the hardware implementation of a carry-look-ahead addition. It is assumed
that the fan-in is 4; consequently, the building blocks are 4-bit slices. Two building blocks are
necessary. The first one is a 4-bit adder with internal carry-look-ahead across 4 bits, and the
second one is 4 group carry generator. Figure 3.4 shows the gate level implementation of the
4-bit CLA adder, according to the equations for Sy through S; and C; through Cj.

Figure 3.5 is the gate implementation of the four group CLA generator. The equations for this
generator are as follows, where G and Pj are the (0-3) group generate and propagate terms (to
distinguish them from Gy and Py, which are bit generate and propagate terms):

Cy = G6 + PéCo
Cs = G)+PGy+ P{FCy
Cia = GI2 + PZIGII + P2IP1,G6 + PZIPIIP(;CO

and the third level generate (G") and propagate (P'") terms are:

G" = Gj+PiG)+ PiPyG; + PiPPIGy
P" = P,PPIP,

The G" and P" are more completely labeled G and P}'. The corresponding third level carrys

82 CHAPTER 3. ADDITION AND SUBTRACTION

4 ’ 4 ’ 4 14 / P 7
Ga F)3 G2 F)2 G1 P1 G0 0]

pY G// c c c

Figure 3.5: Four group carry-look-ahead generator (gate count = 14).

are:
Cie = Gy + PJCy (Cp can be end around carry)
Cs» = G{+P'Gy+P'PyCy
Cis = G5+ PGy +PyP'Gy + P P/'PCqy
Ces = G4+ P/Gy+P/P)G! + P/P)P'Gy + PyP)P/'Cy

The implementation of a 64-bit addition from these building blocks is shown in Figure 3.6. From

this figure, we can derive the general equation for worst case path delay (in gates) as a function
of fan-in and number of bits.

The longest path in the 64-bit addition consists of the following delays:

e Initial generate term per bit 1 gate delay
e Generate term across 4 bits 2 gate delays
e Generate term across 16 bits 2 gate delays
e (4g generation 2 gate delays
e (Jgp generation 2 gate delays
e (g3 generation 2 gate delays
e Sg3 generation 1 gate delays

Total = 12 gate delays

In general, for n-bit addition limited by fan-in of r:

e Generate term per bit 1 gate delay
e Generate Cp, 2% (2(number of CLA levels)—1) gate delays
e Generate S, 1 gate delay

Total CLA gate delays = 2 + 4 (number of CLA levels) — 2

3.1. FIXED POINT ALGORITHMS 83

Se3

BSSBEI BSBD

A2 Ago As Ao

Ceor)|| Cse [Csz [C48hlc4 LCAO [Cse [C32 [CZS [C24 lczo Lcm |C12 | Cg [C4 l Coh
$ S,
SZSO

| @2 GATE DELAYS

| {5 2 GATE DELAYS = co|

Ceas | {= 2 GATE DELAYS

Co|

WORST CASE PATH DELAY [

Ce3

Figure 3.6: 64-bit addition using full carry-look-ahead. The first row is made of a 4-bit adder
slice with internal carry-look-ahead (see Figure 3.4). The rest are look ahead carry generators
(see Figure 3.5). The worst case path delay is 12 gates (the delay path is strictly for addition).

Total CLA gate delays = 4 (number of CLA levels).
The number of CLA levels is [log, n].

‘ CLA gate delays = 4[log, n| ‘

Before we conclude the discussion on carry-look-ahead, it is interesting to survey the actual
integrated circuit implementations of the adder-slice and the carry-look-ahead generator. The
TTL 74181 [30] is a 4-bit slice that can perform addition, subtraction, and several Boolean
operations such as AND, OR, XOR, etc. Therefore, it is called an ALU (Arithmetic Logic Unit)
slice. The slice depicted in Figure 3.4 is a subset of the 74181. The 74182 [30] is a four-
group carry-look-ahead generator that is very similar in implementation to Figure 3.5. The only
difference is in the opposite polarity of the carries, due to an additional buffer on the input
carry. (Inspection of Figure 3.6 shows that the Generate and Propagate signals drive only one
package, regardless of the number of levels, whereas the carries’ driving requirement increases
directly with the number of levels.) For more details on integrated circuit implementation of
adders, see Waser [32].

3.1.4 Canonic Addition: Very Fast Addition and Incrementation

So far, we have examined the delay in practical implementation algorithms—conditional sum
and CLA—as well as reviewing Winograd’s theoretic delay limit. Now Winograd [36] shows
that his bound of binary addition is achievable using (r,d) circuits with a conditional sum
algorithm. The question remaining is what is the fastest known binary addition algorithm using
conventional AND-OR circuits (fan-in limited without use of a wired OR).

Before developing such fast adders, called canonic adders, consider the problem of incremen-
tation—simply adding one to X, an n-bit binary number. Winograd’s approach would yield a

84 CHAPTER 3. ADDITION AND SUBTRACTION

bound on an increment of:

Increment (r,d) delays = [log,.(n + 1)].

Such a bound is largely realizable by AND circuits, since the longest path delay (the highest
order sum bit, S,) depends simply on the configuration of the old value of X. Thus, if we
designate I as the increment function:

X, 1 Xn 2. Xo
+ I

CnSn-1Sn—2...5

Then C,, the overflow carry, is determined by:
n—1
Cn = H X;-I (i-e., the AND of all elements in X),
i=0

and intermediate carries, Cj:
i1
c;=][x-1
=0
C,, is implementable as a fan-in limited tree of AND circuits in:
C,, gate delays = [log,(n + 1)].

Each output S; bit in the increment would have an AND tree:

So XodI
Sj = Xj@Cj

Thus, the delay in realizing S,,—; (the nth sum bit) is:
Increment gate delays = [log, n] + 1,

that is, the gate delays in C,,_; plus the final exclusive OR.

Example 3.1

A 15-bit incrementer (bits 0-14) might have the following high order configuration for S14 and

3.1. FIXED POINT ALGORITHMS 85

Cis.

X13 :14;

12—

j

X13 .

e lDs —L}Cis
o)
X9 xa:)
X7 XGH N\
X5 x4 3 / - 514
X — X
wed ‘

L

The amount of hardware required to implement this approach is not as significant as it first
appears. The carry-out circuitry requires:

n n 1
I-—-|+ —-—| +... gates,
r ror

EIC S

where the series consists of only a few terms, as it terminates for the lowest k that satisfies:
n
— | =1
IJ'k J

The familiar geometric series (1 + % + T% +---) can conservatively be replaced by its infinite sum
L. Thus:
r—1

or approximately

n r
number of increment gates in C), < [—-| ()

r r—1
and summing over the carry terms and adding the n exclusive ORs for the sums,

n .
) r
total increment gates < E [—-‘ (1) +n
T T —
i=1

or, ignoring effects of the ceiling,

total increment gates ~ 5
r

¢

Now, most of these gates can be shared by lower order sum terms (fan-out permitting). Thus,
for lower order terms (e.g., Sp—2):

Spn—2 = (Xp—2-Xp_3---Xp_—2_r) (existing terms from C,_5_,.).

86 CHAPTER 3. ADDITION AND SUBTRACTION

Thus, only two additional circuits per lower order sum bit are required. The total number of
increment gates is then approximately:

. n n

increment gates ~ [;-‘ +2(n—1)+n~ [;-‘ + 3n,

e.g., for r = 4 and n = 32 the total number of gates is 104 gates.

The same technique can be applied to the problem of n-bit binary addition. Here, in order to
add two n-bit binary numbers:
Xn_1Xn_o...Xo
+Y, 1Y, .. Y

Sn_1Sn_2...50
We have:

Crn=Gn_1 designated as Cp,=Cn-1
+Pn71 : Gn72 +Cgi2
+Pn71 . Pn72 . Gn73 +Cg_3
+ +
+ H?:_11 P; - Go +Cy

and for each sum bit S; (n — 1> j > 0),

and So=Xo9Y)

In the above, G; = X;-Y;, P, = X; +Y; and C? designates the term that generates a carry-out
of bit ¢ and propagates it to a bit n. This is simply an AND-OR expansion of the required
carry—hence the term “canonic addition.”

The C,, term consists of an n-way OR, the longest of whose input paths is an n-way AND which
generates in bit 0 and propagates elsewhere. Note that since G; = X; - Y;, a separate level to
form G is not required, but each P; requires an OR level.

Thus, the number of gate delays is [log, n] for the AND tree and a similar number for the OR
tree, plus one for the initial P;:

Gate delays in C,, = 2[log, n] + 1.

The formation of the highest order sum (S, 1) requires the formation of C, 1 and a final
exclusive OR. Thus,

Gate delays in S,, = 2[log,(n — 1)] + 2.

Actually, the delay bound can be slightly improved in a number of cases by arranging the inputs
to the OR tree so that short paths such as G,—1 or P,_1 - G,,—1 are assigned to higher nodal
inputs, while long paths such as H?;kl P, -G (k=1,2,3...) are assigned to a lower node.

This prioritization of the inputs to the OR tree provides a benefit in a number of cases where the
number of inputs n exceeds an integer tree boundary by a limited amount. The AND terms use
from one gate delay to [log, n] gate delays. If we can site the slow AND terms in fast positions

3.1. FIXED POINT ALGORITHMS 87

in the OR tree (and there are enough of them!), we can save a gate delay (6 = 1). For example,
if r =4 and n = 7, we would have

Cr =Ge+ Fs-Gs + Ps PsGy + Ps Ps PyG3 + Ps Ps PAP3Go + Ps Ps Py Ps PyGy + Ps Ps PoP3 P P Gy

The first four AND terms are generated in one gate delay, while the remaining three terms
require two delays (r = 4). However, the OR tree consists of seven input terms—four at the
second level and three at the root. Thus, the slow AND terms can be accommodated in the
three fast (first-level) sites in the OR tree, saving a gate delay.

More generally, the number of long path terms in the AND tree is
n— T[logr n'|—1.

The OR (with [log,.n] levels) has
pllog, nl—1

n — ,,.|—10g,,, n]_l
r—1

have been used for the highest level inputs. Thus,

1 -1
pMlog, ml—1 _ [ﬂw
r—1

total preferred sites of which

are the number of preferred sites available in the OR tree. Now, if the available site equals or
exceeds the number of long AND paths, we have a savings of one gate delay:

n— T[logr n]—1 < 7-|—10gr n]—-1 _ flogr(n _ T,[logr n-|71'|

n < 2,,.|'10gr nl—1 _ flog,,(n _ ,,,[logr n]—l)‘|

Thus, the exact delay is:

Canonic addition gate delays = 2[log,.(n —1)] +2—4¢ ‘

where ¢ is the Kronecker § and is equal to 1 whenever [log.n] > 1 and the above integer
boundary condition is satisfied.

Consider the example r = 4 and n = 20.
Now [log,20] =3
and pllog, nl—1 — p3-1 — 146
and log,(20 — 4%) =1
Since n=20<32-1

then 0=1
Gate delays = 2[log, 191 +2 -1

=7

88

Whereas

Example 3.2

CHAPTER 3. ADDITION AND SUBTRACTION

Winograd’s bound = [log, 2 - 20]= [log, 40],

The AND tree for the generate in bit 0 and propagate to bit 19 (C%) is:

F?S:

/

ol

Ot

v

Terms Ciy, C%y and C3, (two stages of delay) will have similar structures (i.e., three stages of
delay), however, lower stages C}, for i between 4 and 14 have two stages of delay, while Ci§

through G19 have one stage. &

Thus, in the OR tree we must insure that terms CJy through C7, are preferentially situated

6 =1).

Cio

3.1. FIXED POINT ALGORITHMS 89

The amount of hardware required is not determinable in a straightforward way, especially for
the AND networks. For the OR networks, we have:

4 bits at 6 gates
4 bits at 5 gates
8 bits at 4 gates’
4 bits at 1 gate

or 80 gates total. To this must be added 20 x 2 gates for initial propagate and generate terms.
The AND gates required for bit 19 include the six gates in the AND tree used to form CY,
plus the AND circuits required to form all other C%y (i from 1 to 18), terms. Since many of
the AND network terms have been formed in CYy, only two additional gates are required for
each i in Cgy; one to create an initial term and one to collect all terms. Actually, we ignore a
number of cases where only one additional gate is required. Then the C19 AND network consists
of 6 +2-18 = 42 gates. So far, we have ignored fan-out limitations, and it is worth noting
that many terms are heavily used—up to 20 times. However, careful design using consolidated
terms (gates) where appropriate can keep the fan-out down to about 10—probably a practical
maximum. Thus, fan-out limits the use of Cig terms in Cig, etc. But the size of the AND trees
decreases for intermediate bits Cj; e.g., for Cy about 13 gates are required. As a conservative
estimate, assume that (1/2)(42) gates are required as an average for the AND networks. The
total number of gates is then:

AND networks: (1/2)(42)(20) =420

OR networks: = 80
initial terms: 2x20 = 40
Exclusive ORs: 2x20 = 40
total: = 580 gates

While 580 gates (closer to 450 with a more detailed count) is high compared to a 20-bit CLA
addition, the biggest drawbacks to canonic addition are fan-out and topology, not cost. The
high average gate fan-out coupled with relatively congested layout problems leads to an almost
three-dimensional communication structure within the AND trees. Both serve to significantly
increase average gate delay. Still, canonic addition is an interesting algorithm with practical
significance in those cases where at least one operand is limited in size.

3.1.5 Ling Adders

Adders can be developed to recognize the ability of certain circuit families to perform special
logic functions very rapidly. The classic case of this is the ability to “DOT” gates together. Here,
the output of AND gates (usually) can simply be wired together, giving an OR function. This
wired OR or DOT OR has no additional gate delay (although a small additional loading delay
is experienced per wired output, due to a line capacitance). Another circuit family feature of
interest is complementary outputs: each gate has both the expected (true) output and another
complemented output. The widely used current switching (sometimes called emitter coupled
or current mode) circuit family incorporates both features. Of course, using the DOT feature
may invalidate the premise of the (r,d) circuit model that all logic decisions have unit delay
with fan-in . Ling [16] has carefully developed adder structures to capitalize on the DOT OR

90 CHAPTER 3. ADDITION AND SUBTRACTION

ability of these circuits. By encoding pairs of digit positions (A4;, B;, A;_1, B;_1), Ling redefines
our notion of sum and carry. To somewhat oversimplify Ling’s approach, we attribute the local
(lower neighbor) carry enable terms (P;_;) to the definition of the sum (S;), leaving a reduced
synthetic carry (designated H;i1) for non-local carry propagation (P; = A; + B;). Ling finds
that the sum (S;) at bit 4 can be written as:

Si=(Hit1© P;) + Gi - Hi - P
=(G;+P-1-H)®P,+G,; -H;- Py

where H; is defined by the recursion
Hiyy =G+ H; - Py
While the combinatorics of the derivation are formidable, the validity of the above can also be
seen from the following table. Note that the recursion is equivalent to:
Hiyy =G+ C;

compared with
Cz'+1 =G; + P;C;.

Now
Pi-Hiy1n = PBGi+ BC;

= G;+ PC;

= Cia
or

Ci =P - H;,
and
Hiyy =G+ Ci =G+ P_1H;.
Also, since
Si=A; & B; @ Cj,

then

Si=A;®B; ® P,_1H;.

Function Inputs Outputs

f(n) Ai Bi H; | S Hipa
0 0 0 0 0 0
1 0 0 1 sz 1 P¢, 1
2 0 1 0 1 0
3 0 1 1 | Pioi | Px
4 1 0 0 1 0
5 1 0 1 |Piyi| Py
6 1 1 0 0 1
7 1 1 1 P4 1

3.1. FIXED POINT ALGORITHMS 91

H; is conditioned by P; ; in determining the equivalent of C;. If a term in the table has
H; = 0, the equivalent C; must be zero and the S; determination can be directly made
(as in the cases f(0), f(2), f(4), f(6)). Now whenever H; = 1 determines the sum outcome,
the P;_; dependency must be introduced. For f(1) and f(7) the S; = 1if P,_; = 1; for f(3)
and f(5), the S; = 0if P,_; = 1 (i.e., f(3) and f(5) are conditioned by P;). A direct expansion
of the minterms of

Si=G;+P_1-H)®P,+G;-H;-Pi_

produces the S; output in the above table:

Si=Pi1-(f(1) + f(7)) + Pie1 - (f(3) + f(5)) + f(2) + f(4).

The synthetic carry H;11 has similar dependency on P;_1; for f(3) and f(5), H;+1 = 1 occurs if
P;_y =1. For f(6) and f(7) H;+1 = 1 regardless of the H; - P;_1, since G; = 1. The f(1) term
is an interesting “don’t care” term introduced to simplify the H;y; structure. This f(4) term
in H; does not affect S;, since S; depends on H;. Now S;,; cannot be affected by H;;1 (f(1)),
since P; (f(1)) = 0. Similarly H;,, also contains the term H;;P;, which for f(1) is zero by
action of P;.

To understand the advantage of the Ling adder, consider the conventional Cy (carry-out of bit
3), as contrasted with Hy:

Cy = G35+ P3Gy + P3sPoGy + P3P, PGy,

Hy = G35 + PGy + P,PiG1 + PP, PyGo.

Without the DOT function Cj is implementable (r = 4) in three gate delays (two shown, plus
one for either P or G). C4 can be expanded in terms of the input arguments:

Cy = A3Bz+ (A3 + B3)AsBs + (A3 + B3)(As + B2)A1 By
+(As + Bs3)(As + Bs)(A1 + B1) A By

Cy = A3Bs+ A3AsBy + B3AyBy + A3As A1 By
+A3By A1 By + B3 A2 A1 By + B3 By A1 By
+A3A2A1A0Bo + A3 A2 B1 Ao Bo + A3By A1 Ao By
+A3B2B1 AgBg + B3 A2 A1 Ao By + B3 A2 B1 Ag By
+B3By A1 Ao By + B3 By By Ao By

If we designate s as the maximum number of lines that can be dotted, then we see that to
perform Cy in one dotted gate delay requires » = 5 and s = 15.

Now consider the expansion of Hy:

Hy = A3Bs+ (Ay+ B2)AsBy + (As + Ba)(A1 + B1)A1 By
+(As + B2)(A;1 + B1) (Ao + Bg)AeBg

Hy = A3B3+ AyBy+ A)A1 By + BoA1 By

92 CHAPTER 3. ADDITION AND SUBTRACTION
+AsA1A¢Bg + AsB1ABy
+B2A;AgBy + B2B1AgBg

Thus, the Ling structure provides one dotted gate delay with r =4 and s = 8.

Higher order H look-ahead can be derived in a similar fashion by defining a fan-in limited I
term as the conjunction of P;s; e.g.,

I; = PgPs Py Ps.
Rather than dot ORing the summands to form the P; term, the bipolar nature of the ECL circuit
can be used to form the OR in one gate delay:
P, =A; + B;

and the P; terms can be dot ANDed to form the I terms. Thus, I7, I11, and I15 can be found
with one gate delay.

Suppose we designate the pseudo-carryout of each four bit group as Hig, Hi,, Hg, Hj, and the
group carry-generate as Gy, Gg, G12. Then

H = H
Hg = Hé + I7H!1
Hys = H{y+ hiH}+ I1I;H;
Hi¢ = Hig+ LisH|,+ Lish1Hy + L5 I Hy.
Of course,
Cie = PisHis

Pis(Hig + IisHy o + Lis 11 Hy + Iis I, I Hy),

since terms such as
I;H} = PsPsPyPsHy = Py PsPyCy.

Thus,
14
115111[7H4 = HPL - C4, Gﬁl = C4.
=4
Similarly,
LisI1WH, = IL5PioPyPsP;Hj
= L3P Py PGy

14
117G
=8

Ling suggests that the conditional sum algorithm be used in forming the final result. Thus, S3;
through Sig is found for both C14 = 0 and C1¢ = 1; these results are gated with the appropriate

3.1. FIXED POINT ALGORITHMS 93
Fixed Radix (Binary)
Winograd’s Conditional sum Carry- Canonic Ling
lower bound look-ahead
Formula [log, 2n] 5+2 [logr_l ([%1 — 1)] 4flog,.n] | 2Mlog, m—17+2—06 | [log, 2] +1
gate delays
n = 64 bits 4 9 12 8 4*
r = fan-in = 5
Variable Radix (Residue)
Winograd’s ROM

lower bound

look-up table

Formula [log,. 2[log, a(n)]] 2 + [log, m] + [log,. 2™]
gate delays
n = 64 bits d=2, a(> 2™) = 59,

r = fan-in =5

m = [logg a(>2")] =6
7

2

* The Ling adder requires dot OR, of 16 terms and assumes no additional delay for such dotting.

Table 3.1: Comparison of addition speed (in gate delay) of the various hardware realizations
and the lower bounds of Winograd.

true value of C1¢ and dot ORed in one gate delay. The “extra” delay forming Cig from Pi5H;6
adds no delay, since Pi5 is ANDed with the sum selector MUX function as below:

S =
S =

SgCie + SnCie
SgPisHig + Sn(Pis + Hig)
= SgPisHig + Sy Pis + Sy Hie,

where Sg and Sy represent the higher order 16-bit sum with and without carry-in. (ECL
circuits have complementary outputs; Hig is always available.) Thus, the Ling adder can realize

a sum delay in:

Ling gate delays = [log, 5]+ 1 ‘

so long as the gates can be dotted with capability 2" ! < s.

3.1.6 Simultaneous Addition of Multiple Operands: Carry-Save Adders.

Frequently, more than two operands (positive or negative) are to be summed in the minimum
time. In fact, this is the basic requirement of multiplication. Clearly, one can do better than
simply summing a pair and then adding each additional operand to the previous sum. Consider
the following decimal example:

Carry-
Saving
Addition
Carry-

Propagating
Addition

176
324
958

948
1
1058

Column sum

Column carry

Total

Regardless of the number of entries to be summed, summation can proceed simultaneously on all
columns generating a pair of numbers: column sum and column carry. These numbers must be

94 CHAPTER 3. ADDITION AND SUBTRACTION

CSA

i+1 C.

CPA

CARRY-LOOK-AHEAD

Figure 3.7: Addition of three n-bit numbers.

added with carry propagation. Thus, it should be possible to reduce the addition of any number
of operands to a carry-propagating addition of only two: Column sum and Column carry. Of
course, the generation of these two column operands may take some time, but this should be
significantly less than the serial operand by operand propagating addition.

Consider the addition of three n-bit binary numbers. We refer to the structure that sums a
column as a carry-save adder (CSA). That is, the CSA will take 3 bits of the same significance
and produce the sum (same significance) and the carry (1 bit higher significance). Note that
this is exactly what a 1-bit position of a binary full adder does; but the input connections are
different between CSA and binary full adder. Suppose we wish to add X, Y, and Z. Let X;, Y5,
and Z; represent the ith-bit position.

We thus have the desired structure: the binary-full adder. However, instead of chaining the
carry-out signal from a lower order position to the carry-in input, the third operand is introduced
to the “carry-in” and the output produces two operands which now must be summed by a
propagating adder. Binary full adders when used in this way are called carry-save adders (CSA).
Thus, to add three numbers we require only two additional gate delays (the CSA delay) in excess
of the carry propagate adder delay.

The same technique can be extended to more than three operand addition by cascading CSAs.

Suppose we wish to add W, X, Y, Z; the ith-bit position might be implemented as in Figure 3.8.
High-speed multiplication depends on rapid addition of multiples of the multiplicand and, as we
shall see in the next chapter, uses a generalization of the carry-save adder technique.

3.2. EXERCISES 95

[||
i th
position

L

Ci[1
i th

position

CARRY PROPAGATE

Figure 3.8: Addition of four n-bit numbers.

3.2 Exercises

1. What is the gate delay of a 24-bit adder for the following implementations (r = 4)?

(a) CLA.
(b

) Conditional sum.
(¢) Canonic adder.
)

2. (a) Suppose r = 4 and the maximum dot-OR capability is also 4; for a 64-bit addition
the Ling adder will require how many unit delays, while a canonic adder requires how

many unit delays?

(b) If six 32-bit operands are to be added simultaneously, how many unit delays are
required in CSAs before two operands can be added in a CPA?

(¢) In a certain machine, the execution time for floating point addition is greater than
that for floating point multiplication. Explain (i.e., state the delay conditions which
lead to this situation).

3. The System 370 effective address computation involves the addition of three unsigned
numbers, two of 24 bits and one of 12 low order bits.

(a) Design a fast adder for this address computation (an overflow is an invalid address).

(b) Extend your adder to accommodate a fast comparison of the effective address with a

94bit upper bound address.

4. Design a circuit that can be connected to a 4-bit ALU to detect 2’s complement arithmetic
overflow. The ALU takes two 4-bit input operands and provides a 4-bit output result
defined by three function bits. The ALU can perform eight functions, defined by F5Fj Fp.
The object is to make the circuit as fast as possible. Use as many gates as you like.

For gate timing, use the following:
NAND, NOR, NOT: 5 units

OR, AND: 7 units
XOR: 10 units

96 CHAPTER 3. ADDITION AND SUBTRACTION

Note: Assume delay through ALU > single gate delay.

Ao
F2 Fl FO Function A1
0 0O 0 0 Ay
0 0 1 B-A As
0 1 0 A-B By So
0 1 1 A+B By ALU | 5
1 0 0 AoB By S
1 0 1 AORB Bj S3
1 1 0 A AND B Fy
1 1 1 -1 B

F,

5. It has been suggested that 1% x 8® ROMs could be used as counters to realize a 32-bit
CPA (Ci, = 0). Design such a unit. Show each counter and its DOT configuration or
(CRg,...,d) designation. Clearly show how its input and output relate to other counters.

Minimize (with priority):
(a) The number of ROM delays.
(b) The total number of ROMs.
(¢) The number of ROM types.

What are the number of ROM delays, the total number of ROMs, and the number of ROM
types? Show a complete design.

