Chapter 2

Residue Numbers and the Limits
of Fast Arithmetic

In this chapter, we are concerned about the speed of arithmetic. In most arithmetic systems, the
speed is limited by the nature of the building block that makes logic decisions and the extent to
which decisions of low order numeric significance can affect results of higher significance. This
latter problem is best illustrated by the addition operation, in which a low order carry can have
a rippling effect on a sum.

We begin by examining ways of representing numbers, especially insofar as they can reduce the
sequential effect of carries on digits of higher significance. Carry independent arithmetic (called
residue arithmetic) is possible within some limits. This residue arithmetic representation is a
way of approaching a famous bound on the speed at which addition and multiplication can be
performed.

This bound, called Winograd’s bound, determines a minimum time for arithmetic operations
and is an important basis for determining the comparative value of various implementation
algorithms to be discussed in subsequent chapters.

For certain operations storage, especially a Read Only Memory (ROM), can be used to “look-up”
a result or partial result. Since very dense ROM technology is now available, the last section of
this chapter develops a performance model of ROM access. Unlike Winograd’s work, this is not
a strict bound, but rather an approximation to the retrieval time.

2.1 The Residue Number System

2.1.1 Representation

The number systems considered in the last chapter are linear, positional, and weighted, in which
all positions derive their weight from the same radix (base). In the binary number systems, the
weights of the positions are 2°, 2!, 22, etc. In the decimal number system, the weights are
10° =1, 10! = 10, 102 = 100, 10® = 1000, etc.

51

52 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC

The residue number system [15, 20] usually uses positional bases that are relatively prime to
each other, for example, 2, 3, 5. For instance, if the number 8 is divided by the base 5, the
residue is 3. The following table lists the numbers 0 to 29 and their residues to bases 2, 3, and

5. (The number of unique representations is 2 x 3 x 5 = 30.)

Residue to base Residue to base Residue to base
N|5 3 2 N|5 3 2 N |5 3 2
01010 0 10(0|1 0 20 10| 2 0
1 11 1 11 (1| 2 1 21 (1] 0 1
2122 0 12 | 2|0 0 22 |21 0
3131]0 1 13131 1 23 1312 1
4 (411 0 14 | 4] 2 0 24 |4 10 0
51012 1 15(0]0 1 25 (0|1 1
6 |11]0 0 16 (1|1 0 26 | 1] 2 0
7121 1 17 |1 2| 2 1 27 12 1 0 1
81312 0 18(3]0 0 28 131 0
91410 1 19 (4]1 1 29 | 4 | 2 1

The residues in the above table uniquely identify a number.

the decimal number 7 just as uniquely as binary 111.

To convert a conventionally weighted number (X) to the

residue of X with respect to each of the positional moduli.

Example 2.1

To convert the decimal number 29 to a residue number, we compute:

The decimal number 29 is represented by [4,2,1] in the above residue number system. <

The main advantage of the residue number system is the absence of carries between columns
in addition and in multiplication. Arithmetic is closed (done completely) within each residue
position. Therefore, it is possible to perform addition and multiplication on long numbers at the
same speed as on short numbers, since the speed is determined by the largest modulus position.
Recall that in the conventional linear weighted number system, an operation on long words is

Rs
R;
Ry

slower due to the carry propagation.

= 29mod 5 =
= 29mod 3 =
= 29mod?2 =

4
2
1

2.1.2 Operations in the Residue Number System

Examples of additions in 5, 3,2 residue arithmetic are:

9 —

+16 —

25 —
decimal

[4,0,1] 8 —
[1,1,0] +19 -
[0,1,1] 27 —
residue decimal
5,3,2

[3,2,0]
[4,1,1]
[2,0,1]
residue
5,3,2

The configuration [2, 1, 1] represents

residue system, we simply take the

2.1. THE RESIDUE NUMBER SYSTEM 53

Note that each column was added modulo its base, disregarding any interposition carries. An
example of multiplication is:

7T = [2,1,1]
x4 — x[4,1,0]
28 [3,1,0]

Again, each column is multiplied modulo its base, disregarding any interposition carries; for
example, 2 Xx 4mod 5 = 8 mod 5 = 3.

The uniqueness property is the result of the famous Chinese Remainder Theorem.

Theorem 1 Chinese Remainder

Given a set of relatively prime moduli (m4,ma,...,m;,...,my), then for any X < M, the set
of residues {X mod m;|1 < i < n} is unique, where

M = ﬁm,
=1

The proof is straightforward. Suppose there were two numbers Y and Z that have identical
residue representations; i.e., for each i, y; = z;, where

y; = Y modm;
2 Z mod m;.

Then Y — Z is a multiple of m;, and Y — Z is a multiple of the least common multiple of m;. But
since the m; are relatively prime, their least common multiple is M. Thus, Y — Z is a multiple
of M, and Y and Z cannot both be less than M [37].

Subtraction: Since (amod m) — (bmod m) = (a — b) mod m, the subtraction operation
poses no problem in residue arithmetic, but the representation of negative numbers requires the
use of complement coding.

Following our earlier discussion on complementation, we create a signed residue system by
designating numbers X < M/2 as positive, and X > M/2 as negative, for all X < M. That is,
a number X > M/2 is treated as X — M,

(X = M)mod M = X mod M,
and the complement of X mod M is:
X¢=(M - X)mod M.
In residue representation X = [z;], where z; = X mod m; and the complement of X is the
complement of [z;]. Call the complement of X, X¢ and of z;, z{. Then

x{ = (m; — x;) mod my;

54 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC
and
[z:] = [=7] = X¢,

since —z; and m; — x; are congruent, mod m;.

Example 2.2

In the 5,3,2 residue system, M = 30, integer representations 0 through 14 are positive, and 15
through 29 are negative (i.e., represent numbers —15 through —1). Now:

8 =13,2,0],
9 = [4707 1]7
(8)°=1[2,1,0] i.e., 5—3,3—2, and (2—0)mod 2,
and
(g)c = [1707 1]'
8 = 8 = [3,2,0]
=9 = ®° = #L01]]
-1 [4,2,1] =29or -1

2.1.3 Selection of the Moduli

Certain moduli are more attractive than others for two reasons:

1. They are efficient in their binary representation; that is, n binary bits can represent ap-
proximately 2" distinct residues.

2. They provide straightforward computational operations using binary adder logic.
Moduli of the form 2k, 28+ — 1, 2k2 — 1 . 2k~ — 1 (ky, ko,...,k, are integers) were suggested
by Merrill [26] as meeting the above criteria.
Note that not all numbers of the form 2% — 1 are relatively prime. In fact, if k is even:
2k — 1 = (2F/2 — 1)(2F/2 4 1).
If k is an odd composite, 2F — 1 is also factorable, and for k¥ = p, with p a prime, the resulting
numbers may or may not be prime. For k = a - b, the factors of 2¥ — 1 are (2% — 1) and

(20— 4 20(6-2) 4 | 4 22(0) whose product is (2% — 1) = (2¥ —1). For k = p, a prime, we
have the famous Merseene’s numbers [27]:

M,=27-1 (p a prime).

2.1. THE RESIDUE NUMBER SYSTEM 95

Table 2.1: A Partial List of Moduli of the Form 2* and 2*¥ — 1 and Their Prime Factors

Moduli Prime Factors
3 R
7 _
15 3,5
31 —
63 3,7
127 —
255 3,5
511 7,73
1023 3,11,31
2047 23,89
4095 3,0,7,13
8191 —
2k (k=1,2,3,4...) 2

Merseene asserted in 1644 that the only p’s for which M, is prime are:
p=2,3,5,7,13,17,19,31,67,127,257.

The conjecture stood for almost 300 years. In a historic paper in 1903, F. N. Cole showed that
Mgz was not a prime.

Table 2.1 lists factors for numbers of the form 2% — 1. Note that any 2" will be relatively prime
to any 2% — 1. The table is from Merrill [26].

Since the addition time is limited in the residue system to the time for addition in the largest
module, we should select moduli as close as possible to limit the size of the largest modulus.
Merrill suggests the largest be of the form 2* and the second largest of the form 2*¥ — 1, k the
same. The remaining moduli should avoid common factors. He cites some examples of interest:

Bits to represent Moduli set
17 32,31,15,7
25 128, 127, 63, 31
28 256, 255, 127, 31

If the moduli are relatively prime, we can “almost” represent as many objects as the pure binary
representation. For example, in the 17-bit case, instead of 27 code points, we have

25(25 —1)(2* — 1)(2% — 1) = 217 — O(2%).

where O(2!*) indicates a term on the order of 2'*. Thus, we have lost less than 1 bit of
representational capability (a loss of 1 bit would correspond to an O(2!9) loss).

2.1.4 Operations with General Moduli

With the increasing availability of ROM (Read Only Memory) technology, the restriction to
moduli forms 2¥ or 2¥ — 1 is less important. Thus, addition, subtraction, and multiplication

56 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC

can be done by table look-up. In the most straightforward implementation, separate tables are
kept for each modulus, and the arguments z; and y; (both mod m;) are concatenated to form
an address in the table that contains the proper sum or product.

Example 2.3

A table of 1024 or 2'0 entries can be used for moduli up to 32, or 25; i.e., if z; and y; are 5-bit
arguments, then their concatenated 10-bit value forms an address into a table of results.

— 5> —+ 5P o ROM
x; Y; (1024 entries)
P
addresses
result

I 1
sum or product

In this case, addition/subtraction and multiplication are accomplished in one access time to the
table. Note that since access time is a function of table size and since the table size grows at 22"
(number of bits to represent a number), residue arithmetic has a considerable advantage over

conventional representation in its use of table look-up techniques. ¢

2.1.5 Conversion To and From Residue Representation

Conversion from an ordinary weighted number representation into a residue representation is
conceptually simple—but implementations tend to be somewhat less obvious.

Conceptually, we could just divide the number to be converted by each of the respective moduli,
and the remainders would form the residues. This process is usually too slow, however, and the
integer to be converted is decomposed (as in the 2F — 1 case) and its components are converted
and summed modulo the respective base. Thus, an integer A can be represented in familiar
weighted positional notation:

A=) AR,
=0
where R = radix

A; = the value of the ith position

It is decomposed with respect to radix position, or pairs of positions, simply by the ordered
configuration of the digits.

In the usual case, the radix and the modular base are relatively prime, and for single-position
conversion we would have:
Tj; = A; R " mod mj,

2.1. THE RESIDUE NUMBER SYSTEM 57

where z;; is the ithcomponent of the m; residue of A, and then z; (the residue of A mod m;) is
T = (z Z’ji) mod m;.
i

The process can be quickly implemented. Since
zj; = (A; mod m; - R"~* mod m;) mod m;,

the R"~ mod m; term is precomputed and included in a table that maps A; into x;;. Thus, z;;
is derived from A; in a single table look-up.
Example 2.4

Compute the residue mod 7 of the radix 10 integer 826.

826 8x100+2x10+6

= A0X102+A1X].0+A2

Now,
100mod 7 = 2
10mod 7 =
Thus, we have the following tables:
Ao on A1 le A2 Xj2
0 0 0 0 0 0
1 2 1 3 1 1
2 4 2 6 2 2
3 6 3 2 3 3
4 1 4 5 4 4
5 3 5 1 5 5
6 5 6 4 6 6
7 0 7 0 7 0
8 2 8 3 8 1
9 4 9 6 9 2

826 mod 7 = (2+ 6 + 6) mod 7 = 0. Larger tables reduce the number of additions required, and

thus may improve the speed of conversion. ¢

There is an important special case of conversion into a residue system: converting a mod 2"
number into a residue representation mod 2% or mod 2% — 1. This case is important because
of the previously mentioned coding efficiency with these moduli, and because mod 2™ numbers
arise from arithmetic operations using conventional binary type logic.

58 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC

The conversion process from a binary representation (actually, a residue mod 2™) to a residue
of either 2% or 2F — 1 (n > k) is as follows: partition the n bits into m digits of size k bits; that
is, m = [£]. Then a binary number X mod 2" is:

Xbase2 = Xn—1 gn—1 + X0 gn—2 + -+ Xo,
where X; has value 0 or 1, and can be rewritten as:
1 _9
KXpaseox = Xm-1 (2k)m + X2 (Zk)m + -+ X,

where X; has values {0,1,...2% —1}. This is a simple regrouping of digits. For example, consider
a binary 24-bit number arranged in eight 3-bit groups.

Xpases = 101 011 111 010 110 011 110 000.
This may be rewritten in octal (k = 3) as [2] = [2!] digits:

Xbase8:53726360.

The residue X mod 2% = X, (the least significant k bits), since all other digits in the represen-
tation are 0 mod 2%, (k = 3).

Now the residue of X}, o« mod (2F — 1) can be computed directly from the mod 2* represen-
tation. If X is a base 2¥ number with n digits (X,,_; ... Xp), and X is its ith digit:

n—1

X mod (28 —1) = <Z X;(2)" mod (2% — 1)) mod (2% —1).

i=0

For Xo mod (2F — 1), the residue is the value Xy for all digit values except X, = 2F — 1, where
the residue is 0. Similarly, for X;2* mod 2* —1, the residue is X; (1 for each 2" multiple) unless

X, itself is 28 —1, in which case the residue is 0. For X;(2*)’ mod 2* — 1, the residue = X;, where
X; # 2F — 1 and the residue = 0 if X; = 2¥ — 1. This is the familiar process of “casting-out”
(b —1). In the previous example (X in octal),

X =53726360

and
zr=Xmod7=(5+3+0+2+6+3+6+0)mod?7.

Now, pair-sum mod 7 can be directly computed from a mod 8 adder by recognizing three cases:

1. a+b< 2k —1,that is,a+b < 7; then (a + b)mod 7 =a + bmod 8 = a + b.
2. (a+b)=2F —1,a+b="7; then (a + b) mod 7 = 0—that is, cast out 7’s.

3. a+b>2F—1, that is, a + b > 7; then (a +b)mod 7 = a+ b+ 1. A carryout occurs in
a mod 8 adder. This end-around carry must be added to the mod 8 sum. Iff a +b > 7,
then a + b+ 1= (a+ b)mod 7, i.e., we use end-around carry.

In our example, z = Xmod 7=(5+3+0+2+6+3+6+0)mod 7.

2.1. THE RESIDUE NUMBER SYSTEM 59

543 0+2 6+3 6+0
—— —— —— ——
octal 10 2 11 6
mod 7 1+40=1 2 1+1=2 6
octal 1+2=3 2+6=10
mod 7 3 1+0=1
octal 3+1=4
mod 7 4
and z = 4

Conversion from residue representation is conceptually more difficult; however, the implemen-
tation is also straightforward [37].

First, the integer that corresponds to the residue representation that has a “1” in the jthresidue
position and zero for all other residues is designated the weight of the jth residue, w;. The
ordering of the residues (the “j”s) is unimportant; however, since they are ordered, only one
integer (mod the product of relatively prime moduli) will have a residue representation of 0, 0,
1, 0 ...0. That is, it would have a zero residue for all positions # j and a residue = 1 at j.
Now the problem is to scale the weighted sum of the residues up to the integer representation
modulo M, the product of the relatively prime moduli. By construction of the weights, w;, the
product

Z(mj -wj) mod my = x;j,
k

since w; is a multiple of all my (k # j) and (z; - w;) mod m; = X mod m; for all j. Thus, to
recover the integer X from its residue representation, all we do is to sum the weighted residue
modulo M:

X mod M = (Z(wJ ‘Sj)) mod M.

Example 2.5

Suppose we wish to encode integers with the relatively prime moduli 4 and 5. The product (M)
is 20. Thus, we encode integers 0 through 19 in residue representation as follows:

60 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC

Residues
X | tmod4 | x mod5
0 0 0
1 1 1
2 2 2
3 3 3
4 0 4
5 1 0
6 2 1
7 3 2
8 0 3
9 1 4
10 2 0
11 3 1
12 0 2
13 1 3
14 2 4
15 3 0
16 0 1
17 1 2
18 2 3
19 3 4

where w; = Value of X for which residue representation is [1,0] =5
wy = [0, 1] =16.

Suppose we encode two integers, 5 and 13, in this representation:

5 = [1,0]
13 [1,3]

If we now wished their sum, we would get:
[L, 0]
+[1, 3]
[2, 3]

To convert this to integer representation:

|
b

(z1w1 + x2w2) mod 20
(2-5+3-16)mod 20 = 18.

2.1.6 Using the Residue Number System

In the past, the importance of the residue system lay in its theoretic significance rather than
in its fast arithmetic capability. While multiplication is straightforward, division is not, and
comparisons are quite complex. This, coupled with conversion problems, has limited the appli-
cability of residue arithmetic. With the availability of powerful arithmetic technology, this may

2.2. THE LIMITS OF FAST ARITHMETIC 61

change for suitable algorithms and applications. In any event, it remains an important theo-
retic system, as we shall see when determining the computational time bounds for arithmetic
operations.

Another important application of residue arithmetic is error checking. If, in an n-bit binary

system:
a mod 2"

+b mod 2"
¢ mod 2"

then it also follows that:
a mod (2% —1)
+b mod (2F —1)

¢ mod (2F —1)

Since 2" and 2% — 1 are relatively prime, a small k-bit adder (n >> k) can be used to check
the operation of the n-bit adder. In practice, k = 2, 3, 4 is most commonly used. The larger
k’s are more expensive, but since they provide more unique representations, they afford a more
comprehensive check of the arithmetic. For more information on using residue arithmetic in
error checking, see the paper by Watson and Hastings [45].

2.2 The Limits of Fast Arithmetic

2.2.1 Background

The purpose of this section is to present the theoretic bounds on speed of arithmetic operations,
so they can be compared against the state of art in arithmetic algorithms. These bounds serve
as a yardstick to measure practical results, and provide a clear understanding of how much more
speed improvement can be obtained.

2.2.2 Speed in Terms of Gate Delays

The execution speed of an arithmetic operation is a function of two factors. One is the circuit
technology, and the other is the algorithm used. It can be confusing to discuss both factors
simultaneously; e.g., a ripple carry adder implemented in ECL technology may be faster than
a carry-look-ahead adder implemented in CMOS. In this section, we are interested only in the
algorithm and not in the technology; therefore, the speed of the algorithms will be expressed in
terms of gate delays. Using this approach, the carry-look-ahead adder is faster than the ripple
carry adder. Simplistically translating gate delays for a given technology to actual speed is done
by multiplying the gate delays by the gate speed.

2.2.3 The (r,d) Circuit Model

Much of the original work to determine a minimum bound on arithmetic speed was done by
Winograd [46, 47]. In his model, the speed (in gate delays) of any logic and arithmetic operation
is a function of three items:

62 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC

(r,d)

r lines °) .
° Circuit

> Output

Figure 2.1: The (r,d) circuit.

1. Number of digits in each operand = n.

2. Fan-in of the gate (circuit) = r = maximum number of logic inputs or arguments for a
logic element.

3. The radix of the arithmetic = d = number of truth values in the logic system.

Definition: An (r,d) circuit is a d-valued logic circuit in which each element has fan-in of at
most r, and can compute any r-argument d-valued logic function in unit time.

In any practical technology, logic path delay depends upon many factors: the number of gates
(circuits) that must be serially encountered before a decision can be made, the logic capability
of each circuit, cumulative distance among all such serial members of a logic path, the electrical
signal propagation time of the medium per unit distance, etc. In many high-speed logic im-
plementations, especially those using ECL, the majority of total logic path delay is frequently
attributable to delay external to logic gates. Thus, a comprehensive model of performance would
have to include technology, distance, geography, and layout, as well as the electrical and logical
capabilities of a gate. Clearly, the inclusion of all these variables makes a general model of
arithmetic performance infeasible. Winograd’s (r,d) model of a logic gate is idealized in many
ways:

1. There is zero propagation delay between logic blocks.

2. The output of any logic block may go to any number of other logic blocks without affecting
the delay; i.e., the model is fan-out independent. The fan-out of a gate refers to its ability
to drive from output to input a number of other similar gates. Practically speaking, any
gate has a maximum limit on the number of circuits it may communicate with based
on electrical considerations. Also, as additional loads are added to a circuit, its delay is
adversely affected.

3. The (r,d) circuit can perform any logical decision in a unit delay—more comments on this
below.

4. Finally, the delay in, and indeed the feasibility of, implementations are frequently affected
by mechanical considerations such as the ability to connect a particular circuit module
to another, or the number of connectors through which such an electrical path might be
established. These, of course, are ignored in the (r,d) model.

2.2. THE LIMITS OF FAST ARITHMETIC 63

Despite these limitations, the (r, d) model serves as a useful first approximation in the analysis of
the delay /performance of arithmetic algorithms in most technologies. The effects of propagation
delay, fan-out, etc., are merely averaged out over all blocks to give an initial estimate as to the
delay in a particular logic path. Thus, in a particular technology such as ECL, the basic delay
within a block may be one nanosecond; but the effect of delay, including average path lengths,
line loading effects, fan-out, etc., might be closer to 3 and 3.5 nanoseconds. Still, the number
of blocks encountered between functional input and final result is an important and primary
determinant (again, for most technologies) in determining speed.

The (r,d) model is a fan-in limited model, the number of inputs to a logical gate is limited at
r inputs, each gate has one output, and all gates take a unit delay time (given valid inputs) to
establish an output. The model allows for multivalued logic, where d is the number of values in
the logic system. The model further assumes that any logic decision capable of being performed
within an r inputm d-valued truth system is available in this unit time. This is an important
premise. For example, in a 2-input binary logic system (r = 2, d = 2) there are 16 distinct logic
functions (AND, OR, NOT, NOR, NAND, EQUALITY, IMPLICATION, etc.). In fact, there are in
general d? distinct logic functions in a general (r,d) logic system. In any practical logic system,
only a small subset of these are available. These are chosen in such a way as to be functionally
complete, i.e., able to generate any of the other logic expressions in the system. However, the
functionally complete set in general will not perform a required arbitrary logic function in unit
delay, e.g. NOR’s implementing EXCLUSIVE OR requires two unit delays. Thus, the (r,d)
circuit is a lower bound on a practical realization. What we will discover in later chapters is
that familiar logic subsets (e.g., NOR) can by themselves come quite close to the performance
predicted by the (r,d) model.

2.2.4 First Approximation to the Lower Bound

Spira [32] has shown that if a d-valued output f is a function of all n arguments (d-valued
inputs), then ¢, the number of (r,d) delays, is:

t > [log,n]

in units of (r,d) circuit delay.

Example 2.6 (n =10,r=4,d = 2)

[log, n] = [log, 10] = [1.65] = 2

Proof: Spira’s bound can be proved by induction and follows from the definition of the (r,d)
circuit. The (r,d) circuit has a single output and r inputs; thus, a single level (¢ = 1) has r
inputs. Let f; designate a circuit with n inputs and ¢ units of delay.

Consider the case of unit delay, i.e., t = 1. Since the fan-in in a unit block is r, then if the
number of inputs n is less than or equal to r:

1 > [log, n],

64 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC

1 42
n=10 | £
L lunit_ |
{ delay !
<— 2 unit delay ——
n —
P f -1
maximum
of n inputs
— rd) —
maximum
of r circuits

Figure 2.2: The (r,d) network.

since we have to have at least one gate to define the function f. Now suppose Spira’s bound is
correct for delays in a ¢ — 1 circuit (f;—1). Let us find the resulting delay in the network (see
Figure 2.2) for f;. We are given that f;_; is a function of n/r inputs. Now we have:

t—12>[log,(n/r)] = [log,(n) —log.(r)] = [log,(n)] =1

and
t > [log,(n)].
This proves the bound.

Now we can derive the lower bound for addition in the residue number system. <

2.2. THE LIMITS OF FAST ARITHMETIC 65

2.2.5 Spira’s Bound Applied to Residue Arithmetic (Winograd’s Bound)

The time for addition using (r,d) circuits and the residue system is at least:

t Z I—logr 2[10gd Oi(N)-H ’
where a(N) is the number of elements representable by the largest of the relatively prime moduli.

Clearly, since arithmetic is carry independent between the various moduli, we only need concern
ourselves with the carry and propagation delay for the largest of the moduli. If this is N, then
a(N) is the number of distinct numbers that this modulus can represent. Now log, a(N) is the
number of d-valued lines required to represent a number for this modulus. Thus, an addition
network for this modulus has 2[log; a(N)] input lines. In the addition operation, a low order 1
can, for certain configurations of input line configurations, affect the most significant output line.
The most significant output line then depends upon all input lines. Thus, by Spira’s Bound, we
have:

t> [10g, 2 logs a ()]

number of digits
—_————
input lines

Winograd’s theorem is actually more general than the above, since it shows that the bound is
valid not only for the residue arithmetic but for any arithmetic representation obeying group
theoretic properties. In the general case of modular addition, the a(N) function needs more
clarification. In modular arithmetic, we are operating with single arguments mod A™. If A is
prime, then a(N) is simply A™, but if A is composite (i.e., not a prime), then A = A1 As... A,
and arithmetic can be decomposed into simultaneous operations mod A}, mod A%,... mod A7.
In this case, a(N) is AP, where A; is the largest element composing A.

For example, in decimal arithmetic, A = 10™ = 2™ - 5™ and independent pair arithmetic can
be defined for A%} and A?, limiting the carry computation to the largest modules; in this case
a(10™) = 5™.

Frequently, we are not interested in a bound for a particular modular system (say A™), but in a
tight lower bound for a residue system that has at least the capacity of A”. We designate such
a system (> A"™), since the product of its relatively prime moduli must exceed A™.

Example 2.7

1. Modular representation:
prime base a(21?) = 212

composite base a(10'2) = 52;

Note: a composite base has multiple factors (# 1); e.g., 10 = 5.2 is a composite base, while
2 is not composite.

2. Residue representation:

a(> 219); using set {25,2° —1,2% — 1,23 — 1} = 25.

66 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC

Note that minimum a(> 2¥) = p,, where p,, is the nth prime in the product function defined
as the smallest product of consecutive primes p;, or powers of primes, that equal or exceed 2'6:

n
Hpi > 2'6,
i=1

The selection of moduli to minimize the o function is best illustrated by an example. ¢

Example 2.8

Suppose we wish to design a residue system that has M > 247, i.e., at least 2*7 unique represen-
tations. We wish to minimize the largest factor of M, a(M), in order to assure fast arithmetic.
If we simply selected the product of the primes, we would have:

2x3x5x7x11x13x17x19 x 23 x 29 x 31 x 37 x 41 > 247;

that is, the a(> 27) for this selection would be 41.

We can improve the a function by using powers of the lower order primes. Thus:
25 x 3% x 52 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 > 2*7.

Here, a(> 2%7) is 2° = 32. Thus, finding the minimum « function requires that before increasing
the product (in the development of M) by the next larger prime, P,, we check that there are
no lower order primes, P;, which when raised to their next integer power would not lie between
P,_1 and P,. That is, for each i <n — 1 and z the next integer power is F;.

P, 1< .Pf < P,.

We use all such qualified P? terms before introducing P, into the product. &

2.2.6 Winograd’s Lower Bound on Multiplication

Typical multiplication is simulated by successive add—shifts and takes n addition times, e.g.,
multiplication of 16-bit numbers (that can be added in 100ns) takes 1.6 microseconds. Now,
Winograd surprises us by saying that multiplication is not necessarily slower than addition!
And, if this were not enough, multiplication can be even slightly faster than addition [4, 47].

Since multiplication is also a group operation involving two n-digit d-valued numbers (whose
output is dependent on all inputs), the Spira bound applies.

t > [log, 2n],
where 2n = the total number of d-valued input lines.

To see that multiplication can be performed at the same speed as addition, one need only
consider multiplication by addition of the log representation of numbers: if a x b = ¢, then
loga + log b = logc.

2.2. THE LIMITS OF FAST ARITHMETIC 67

Notice that in a log representation, fewer significant product bits are required than in the familiar
linear weighted system. For example, log, 16 = 4.0 requires 4 bits (3, plus one after the binary
point) instead of 5 bits, as 16.0 = 10000.0 would require. Of course, log representations require
subtraction (i.e., negative log) for numbers less than 1.0, and zero is a special case.

Since division in this representation is simply subtraction, the bound applies equally to multi-
plication and division. Also, for numbers represented with a composite modular base (i.e., A™,
where A" = A; x Ay X ... X% A,), a set of log representations can be used. This coding of each
base A number as an n-tuple {log Ai; ¢ = 1 to n} minimizes the length of the carry path by
reducing the number of d-valued input lines required to represent a number.

As an analog to residue representation, numbers can be represented as composite powers of
primes, and then multiplication is simply the addition of corresponding powers.

Example 2.9

12 x 20
12 = 22.31.59
20 = 22.39.51
product 240 = 2%.3!.5!
12 =20
12 = 22.3.59
20 = 2%2.30.5!
12/20 = 2°.3'.571=3/5

Winograd formalizes this by defining B(NN) akin to the a(NN) of addition and shows that for
multiplication:

‘t > [log, 2[log, B(N)1] ‘

where
B(N) < a(N)

The exact definition of B(NN) is more complex than a(N). Three cases are recognized:

Case 1: Binary radix (N =2");n >3

B = 2
for Binary radix (N = 2"); n < 3,

p4) = 2

B2 =1

Case 2: Prime radix (N = p™); p a prime > 2

B(P") = max (p"_l,a(p - 1))
eg., B(59) = a(58)=a(29-2)=29

68 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC

Case 3: Composite powers of primes (N = pt* - p5?...pm)

B(N) = max (B(py*), - -, B(pi") ---) -

Example 2.10

1. N =210 p(210) =28
2. N =51 p(5'0) =5
3.

N — 1010 — 510 R 210 — 5(5107 210)
= max(5(5),5(2"))
= max(5,2%)
= 5°

In order to reach the lower bounds of addition or multiplication, it is necessary to use data
representations that are nonstandard. By optimizing the representation for fast addition or
multiplication, a variety of other operations will occur much slower. In particular, performing
comparisons or calculating overflow are much more difficult and require additional hardware
using this nonstandard representation. Winograd showed that both these functions require at
least [log,(2[log, N1)] time units to compute [47]. In conventional binary notation, both of
these functions can be easily implemented by making minor modifications to the adder. Hence,
the type of data representation used must be decided from a broader perspective, and not based

merely on the addition or multiplication speed. <

2.3 Modeling of ROM Speed in Gate Delays

As an alternative to computing sums or products each time the arguments are available, one
could consider simply storing all possible results in a table. We then could use the arguments
to look up (address) the answer, as shown in the example on page 56.

Would such a scheme lead to even faster arithmetic, i.e., better than the (r,d) bound? The
answer is probably not, since the table size grows rapidly as the number of argument digits,
n, increases. For b-based arithmetic, there are b>” required entries. Access delay naturally is a
function of table size.

Modeling this delay is not the same as finding a lower time bound, however. In ROM’s as well
as many storage technologies, the access delay is a function of many physical parameters. What
we present here is a simple model of access delay as an approximation to the access time.

We start by a simple model of 16 x 1 ROM (Figure 2.3):

2.3. MODELING OF ROM SPEED IN GATE DELAYS 69

X-decoder Cell No. 0
Cell No. 4
(A ° >O < / /
A o
1
o h
Four 'FZ
address Jo
lines °
| 4
A &
3
1
Y-selector %J LTJ
\

Output

Figure 2.3: ROM model.

This ROM is made of 16 cells which store information by having optional diode connections at
each row and column intersection. For example, in the above figure, cell #0(A3A2A;Aq = 0000)
stores one, and cell #4 stores a zero. The delay of the ROM is a combination of the X decoder,
the diode matrix, and the Y selector. In the above case (for fan-in = 4), the ROM delay is made
of four gates (assuming the diode matrix is one gate delay). In general, a ROM with L address
lines has the following delays:

L
X-decode = [logr (5) -‘
Diode matrix = 1
L L
Y-selector = [logT (5 + 1)-‘ + [logT 2 2-|

Half of the address lines (%) are decoded in the X dimension, and according to Spira’s bound
the associated delay is [log,(%)].

In the Y-selector delay, the fan-in to each gate is composed of the % address lines plus a single

70 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC
input from the ROM array. These gates must, in turn, be multiplexed to arrive at a final result.
As there are 2% array outputs, there are [log,. 2%] stages of delay, again by the Spira argument.

Actually, since only the ROM input to the Y-selector is critical, an improved configuration can
be realized. The input to the Y-selector from the ROM is brought down to a single gate. The
other input to this gate is the decoded Y -selection. Now the Y-selection delay is increased by
one gate delay, but this is no worse than the X-decode plus the diode matrix delay. Thus:

Unoverlapped Y-selector =1+ [logT 2%-‘ .

In the special case where [log, L/2+ 1] = 1, the gate delays should be 140 = 1, as the selector
and AND gate can be integrated.

Example 2.11

For 1K word, ROM L = 10, and if we assume r = 5, then:

X-decode = 1
diode matrix = 1
Y-selector = 1+3=4
total = 6 gate delays

When the ROM is used as a binary operator on n-bit numbers, the preceding formula can be

expressed as a function of n, where n = %:

ROM delay = 2 + [log, n] + [log, 2™].

In many ways, this ROM delay points out the weakness of the (r,d) circuit model. In practical
use of LSI ROM inplementations, the delay equation above is conservative when normalized to
the gate delay in the same technology. The (r,d) model gives no “credit” to the ROM for its

density, regular implementation structure, limited fan-out requirements, etc. <

2.4 Additional Readings

The two classic works in the development of residue arithmetic are by Garner [15] and Szabo
and Tanaka [39]. They both are recommended to the serious student.

A readable, complete proof of Winograd’s addition bound is found in Stone [37], a book that is
also valuable for its introduction to residue arithmetic.

2.5 Summary

Alternate representation techniques exist using multiple moduli. These are called residue sys-
tems, with the principle advantage of allowing the designer use of small independent operands for

2.6. EXERCISES 71

arithmetic. Thus, a multitude of these smaller arithmetic operations can be performed simulta-
neously with a potential speed advantage. As we will see in later chapters, the speed advantage
is usually limited to about a factor of 2 to 1 over more conventional representations and tech-
niques. Thus, the difficulty in performing operations such as comparison and overflow detection
limits the general purpose applicability of the residue representation approach. Of course, where
special purpose applications involve only the basic add-multiply, serious consideration could be
given to this approach.

Winograd’s bound, while limited in applicability by the (r,d) model, is an important and fun-
damental limitation to arithmetic speed.

2.6 Exercises

1. Using residues of the form 2* and 2% — 1, create an efficient residue system to include the
range +32. Develop all tables and then perform the operation —3 x 2 4 7.

2. The residue system is used to span the range of 0 to 10,000. What is the best set that
includes the smallest maximum modulus (i.e., a(N))?

(a) If any integer modulus is permitted.

(b) If moduli only of the form 2* or 2F — 1 are allowed.

3. Repeat the above problem, if the range is to be +8,192.

4. Analyze the use of an excess code as a method of representing both positive and negative
numbers in a residue system.

5. Suppose two m bit numbers, A and B, are to be added and the sum checked using an even
parity check on the sum S. A parity check on the sum is proposed for error detection.

(a) Show that this scheme cannot be used in general to detect errors in addition (in the
sum); i.e., P(Ps + Pg) = Ps. The parity on the sum of Py and Pg is compared
against the parity of S.

+
HIEE
>

S

(b) Describe an n-bit check (i.e., Pa, Pg, and Pg, each n bits) so that arithmetic errors
(4, —, %) can be detected in the previous problem.

(¢) Find the probability of an undetected error in this system, where this probability is
defined as:

Number of valid representations

Total number of representations

72 CHAPTER 2. RESIDUE NUMBERS AND THE LIMITS OF FAST ARITHMETIC

(d) Devise an alternative scheme that will provide a complete check on the sum using
parity. This system may use logic on the individual bit sum and carry signals to
complete the check.

6. In Section 2.2.5, the optimum decomposition of prime factors was derived for M > 247,
Following the 32 term, find the next seven factors (either a new prime or a power of prime)
to form M’ to be used in enlarging M. What is the new M’ (approximately) and the new
a(M")?

7. Ifr=4,d =2, and M and M' are defined in Problem 6, find:

(a) Lower bound on addition.
(b) Lower bound on multiplication.

(¢) Number of equivalent gate delays in using a ROM implementation of addition or
multiplication.

8. It is desired to perform the computation z = % + y in hardware as fast as possible. If z
and y are 8 bits, evaluate the number of gate delays (r = 4). Assume x,y are fractions
(5<a, b)

(a) A single table look-up is used to evaluate z.

(b) A table look-up is used to find %, then the result is added to an adder with gate
delays = 4[log, 2n].

(¢) If z and y are n-bit numbers, for what values of n does (a) have superior in-gate delay
to (b)?
Hint: Ignore ceiling function effects in your evaluation.

9. It has been observed that one can check a list of sums by comparing the single digit sum
of each of the digits, e.g:

3714 3+7+4=14; 14+4=5
281 2+8+1=11; 1+1=2
523 5+2+3=10; 1+0=1
1178 54+2+4+1
1+14+74+8=17;14+7=28 — check — =28

(a) Does this always work?
(b) Why? Explain in detail. If (a) is yes, prove it. If (a) is no, show counterexample and

develop a scheme that will work.

10. What is the range of signed integers that can be represented in the 32,31,15 residue
number system? Show how the following operation would be performed in this residue
system.

123
— 283

11. It has been suggested that a “cast-out 8’s” check can be used to check decimal addition.
It goes like this:

2.6. EXERCISES

12.

73

Find a check digit for each operand by summing the digits of a number. If the
result contains multiple digits, sum them until we are reduced to a single digit.
If anywhere along the way we encounter an ‘8,” discard the ‘8’ and subtract 1!
If we encounter a ‘9,” ignore it (i.e., treat it as ‘0’).

The sum of the check digits then will equal the check digit of the sum.

E.g:
34 8 3 1 = 344-1434+1=10=140 =1
8 8 7 2 1 = —-1-14742+1=38 =-1
1 2 3 5 5 2 0
1+2+34+5+5+2 = 18=1-1 =0

Does this always work? Prove or show a counterexample.

Yet another sum checking scheme has been proposed!

It goes like this: Find the check digits by adding pairs of digits together, reducing to a final
pair. Then subtract the leading digit from the unit digit. If the result is negative (# —1),
recomplement (i.e., add 10) and then add “1.” If —1, leave it alone. Always reduce to a
single digit, either —1, 0, or a positive digit.

E.g.:

034831 =
088721 =

123552
12 + 35 + 52

03 +48+31=82=—-6= 45
08 +87+21=116=17= 46

1 1 =0
=99=0 = 0

How about this one? Will it always work? Prove, or show a counterexample.

