Improving the Effectiveness of Floating Point Arithmetic

Hossam A. H. Fahmy

Albert A. Liddicoat

Michael J. Flynn
Computer Systems Laboratory, Stanford University
Stanford, California 94305, USA

Abstract

This work presents several techniques to improve
the effectiveness of floating point arithmetic computa-
tions. A partially redundant number system is pro-
posed as an internal format for arithmetic operations.
The redundant number system enables carry free arith-
metic operations to improve performance. Conver-
sion from the proposed internal format back to the
standard IEEE format is done only when an operand
is written to memory. Efficient arithmetic units for
floating point addition, multiplication and division are
proposed using the redundant number system. This
proposed system achieves overall better performance
across all of the functional units when compared to
state-of-the-art designs. The proposed internal for-
mat and arithmetic units comply with all the rounding
modes of the IEEE 75/ floating point standard.

1 Introduction

Many numerically intensive applications, such as
signal processing, require rapid execution of arith-
metic operations. Addition is the most frequent op-
eration followed by multiplication. However, high-
performance divide and other elementary functions are
becoming increasingly important. This work presents
several techniques to improve the effectiveness of float-
ing point arithmetic units.

A partially redundant number system is proposed
for use as an internal format within the floating point
unit and the associated registers. When a number is
loaded into the floating point register file it is trans-
formed into the proposed format. The floating point
functional units input and output operands in the pro-
posed format. Therefore, all the operations occur us-
ing the partially redundant format. The redundant
number format enables carry free propagation opera-
tions across all of the functional units. The proposed
system with the associated algorithms and circuits
achieve correctly rounded results. If a store opera-
tion is issued, the operand is transformed to the IEEE
single or double precision format.

Section 2 explains the proposed format and the con-
version issues. The floating point addition unit is pre-
sented in section 3 and the multiplication unit is pre-
sented in section 4. Division and other elementary
functions are computed using the floating point func-
tional unit described in section 5. Finally, in section 6
conclusions of this work are presented.

2 Proposed format

The format proposed here is developed based on the
single and double precision formats of the ANSI/IEEE
standard [1]. However, in the proposed format each
group of 4 bits of the significand are represented re-
dundantly as a 5 bit signed digit number using two’s
complement form. The fifth bit (extra bit) represents
a negative value with the same weight as the least sig-
nificant bit of the next higher group. This is shown
for the string of bits a4,a3,a2,al,a0 in Fig. 1. This
extra bit, a4, is saved in the register to the right of
least significant bit in the next higher group and to
the left of a3. As with IEEE formats, the significand
is always positive so there is no need for the extra
bit in the most significant digit. The number is also
always normalized in the proposed format. Denormal-
ized IEEE numbers are normalized in the conversion
process upon loading into the register file. Each group
of 5 bits represents one base 16 digit and therefore, the
exponent is applied to base 16 rather than base 2 as is
used in the normal IEEE format. The proposed format
is in the form, (—1)%¥9" first digit.remaining digits x
16¢2P~bies The guard bits, G, and sticky bits, S, are
saved in the register file with the unrounded result.
The result is then rounded in the following operation
when it is used or saved to the memory. This deferred
rounding technique moves the rounding computation
off the critical path and allows it to be overlapped with
the exponent difference calculation in the adder.

The basic idea is to use a redundant representa-
tion with signed digits for an internal format instead
of the standard IEEE format. Redundant representa-
tions using signed digits (SD) have been proposed for

Sign Biased exponent Significand
+/- e + bias sig.
89bits: 15 bits, bias = 16384 _ 73 bits

Figure 1: The proposed signed digit format for floating
point numbers.

parallel arithmetic and studied in detail in the liter-
ature [2, 3]. Likewise, the use of an IEEE compliant
hexadecimal-based internal format is not new [4]. The
novelity of this proposal stems from the way conver-
sion to and from the SD numbers is achieved, post-
poned rounding as well as extending a number of
known techniques to improve the performance and
provide a comprehensive arithmetic system. In gen-
eral, SD numbers allow carry free addition by using
redundant number representations. Eliminating the
carry propagation significantly reduces the latency of
arithmetic operations. The conversion from binary to
SD form is trivial since the binary format is usually
a valid SD representation. However, converting a SD
number back into a non-redundant form involves a
carry propagation. SD numbers are not commonly
used in arithmetic circuits since the SD to binary con-
version requires a carry propagation. The proposed
system overlaps the SD number to binary conversion
with memory store operations, thus removing it from
the critical path.

2.1 Conversion issues

To convert from the IEEE binary format to the pro-
posed format both the significand and the exponent
must be modified. The method used has been adapted
from the method proposed by Schwarz et al. [4]. Effec-
tively, the bias from the original base 2 exponent must
be subtracted, then the exponent should be divided by
4 to account for the radix change, and finally the bias
of the proposed hex exponent must be added. In addi-
tion to the exponent change, the significand must be
adjusted by the two least significant bits of the origi-
nal base 2 exponent since a fractional exponent is not
allowed.

A function named bthe (as a short notation for Bi-
nary To Hex Exponent) is applied to the most signifi-
cant n—2 bits of the biased base 2 exponent. The bthe
function complements the biased base 2 exponent’s

most significant bit and extends the result through-
out the higher bit positions in the hex exponent. The
most significant bit of the hex exponent is set equal to
the most significant bit of the biased base 2 exponent.

Let R be the remainder of the biased base 2 ex-
ponent, exps, divided by 4. Alternately stated, R is
equal to the value of the least significant two bits of the
biased base 2 exponent, exps. If the original number
is normalized in the IEEE format then the conversion
follows one of the following four possible cases. Note
that for the case of R = 3 there is a 1 added to the
exponent to account for a one digit shift to normalize
the significand.

00lz.zzze--- x16(0the(eap)—2")

Olzx.xx2- - - X 16(bthe(e$p2)_214)

x 16(bthe(ea:p2) —214)

0
1

=2 lxxzx.xx---
3 X 16(bthe(ezp2)7214+1)

0001l.zzzxx - - -

If the original binary number is denormalized then
the leading non-zero digit must first be identified and
the significand left shifted to normalize it. The new
exponent would thus be equal to bthe(exps = 0) —
shift amount. Conversion from a binary format to
the proposed SD hex format is quite simple. At most,
one short addition (15 bits) may be required for the
exponent computation. Since the numbers are stored
in the SD hex format in the register file, the binary to
SD conversion only occurs when operands are loaded
from memory.

The add, multiply and divide/elementary functions
units are all designed to work on unrounded SD num-
bers, therefore, conversion out of the internal format
only occurs when the operands are written to mem-
ory. Rounding is postponed until the start of the sub-
sequent operation or when an operand must be stored
to memory. Rounding does not require a carry prop-
agation since the operand is rounded to a SD num-
ber. By using SD numbers and SD addition rules the
long carry propagation required within carry propa-
gate adders (CPA’s) is eliminated.

To convert the SD significand back to a binary num-
ber the negative extra bits of the SD number are sub-
tracted from the positive bits. This subtraction re-
quires a full carry propagation. The carry propagation
delay required in the conversion is overlapped with the
memory write operation. The exponent must be con-
verted back to the binary base as well. This exponent
conversion is the reverse of the conversion into the SD
Hex format.

MA _MB

15 b Add
! wap [0

Right
sh |gfter

Far path

Output

Figure 2: Block diagram of the two-path adder.

In current floating point designs, the store opera-
tion does not use the execution stage of the pipeline
except for the address calculation of the target mem-
ory location. In the proposed system, the integer ex-
ecution unit is used to convert an operand from the
internal format back into the IEEE format. Another
alternative is to have an additional integer adder in the
FPU unit for the conversion. This conversion does not
add any extra delay to the store operation. Therefore,
contrary to previous designs using SD numbers, the
proposed system effectively hides the delay of the con-
version from SD numbers back to the non-redundant
representation.

3 Floating point addition

In state-of-the-art high-performance floating point
adders, two-path algorithms are used with inte-
grated rounding similar to the designs proposed by
Farmwald [5] and Quach [6]. Two different designs
for the adder using the proposed format were devised.
The first design is a one-path sequential algorithm and
the second design is a two-path algorithm as shown in
the block diagram of Fig. 2. In both designs, post-
poned rounding occurs in parallel with the exponent
subtraction in order to reduce latency. In the two-
path design, the far path is used for all effective addi-
tions and for effective subtractions with exponent dif-
ferences larger than one. The close path is only used
for the case of effective subtractions with an exponent
difference of zero or one.

The far path of the proposed adder is similar to the
far path of other algorithms presented in the litera-
ture. The unique aspects of the proposed adder are,
first, the use of signed digit numbers in the significand
and second the location of the rounding logic in par-

allel with the exponent difference. In the close path
the exact exponent difference is not calculated so the
rounding must be done in conjunction with the signif-
icand addition. A round digit is computed while the
significands are steered into the adder and the round
digit must be applied as a carry in to the significand
adder.

In an effective subtraction in the close path one or
more of the leading digits in the result maybe zero.
Then, in order to normalize the result, the leading
non-zero digit must be detected and the result must
be normalized by left shifting the significand by the
number of leading zeros. All floating point adders
include circuits to either detect or predict the posi-
tion of the leading non-zero digit after the subtraction
is performed. The prediction circuits operate on the
adder’s operands in parallel with the significand ad-
dition. Since in the current scheme signed numbers
are used, there is a slightly more complicated situ-
ation for normalization. The leading zeros may be
expressed directly as zeros or indirectly as a leading 1
followed by —15’s or by a leading —1 followed by 15’s.
In the indirect cases the leading 1 (—1) can be con-
verted to a zero and borrowed into the neighbor —15
(15) digit position as a 16 (—16). Since 16 — 15 =1
(=16 + 15 = —1) the zero propagation may continue
into lower significance digits. The following example
illustrates how leading non-zero digits may be leading
insignificant digits. Assuming |1 |< 15,

1 -15 -15 --- -—15 l
= 0 0 o --- 11

-1 15 15 - 15 l
= 0 0 o .- -11

Because of the added complications in the prob-
lem at hand, instead of trying to predict the number
of leading zeros in parallel with the significand addi-
tion, a leading digit detection scheme is applied to the
significand adder output. Details of the technique is
described elsewhere [7].

The proposed algorithm and other algorithms from
the literature [8, 9, 10, 11] are compared in the follow-
ing table.

Comparative gate delays for double precision
Proposal | Nielsen | Oberman | Smith | Seidel
21 40 27 28 27

The table lists the estimated number of equivalent
gate delays for each of the designs. All of the designs
listed in the table are for double precision operands
and consistent assumptions about the subcomponents
delays are used in the evaluation of each design.

+ve PP -ve PP
generate| generatel Booth recoding
: !
4:2 4:2
4:2 4:2
4:2 4:2
4:2 4:2

Output

Figure 3: General block diagram of the multiplier.

4 Floating point multiplication

The design of the proposed multiplier is shown in
Fig. 3. As shown in the figure, while the rounding
decision is being made for operand X, X + 1 is cal-
culated. Then based on the proper rounding decision
the correctly rounded least significant digit is selected.
The X + 1 computation does not require a carry prop-
agation since SD numbers are being used. For the
multiplier operand Y, the Booth 2 recoding scheme is
modified to take into consideration the extra negative
bits, the guard bits, and the sticky bits of the multi-
plier in order to produce a correctly rounded result.
The extra negative bits of the multiplicand, X, are
dealt with in a slightly different way. The significand
of X is taken as having two components: P the pos-
itively valued bits and E the negatively valued extra
bits.

The output of the Booth recoders are used as select
lines in multiplexers to generate the required partial
products. The positive vectors are then summed by a
tree of [4 : 2] compressors while the negative vectors
are summed by a separate tree of [4 : 2] compressors.
The output of each tree is in carry save format. The
positive and negative vectors are then added using a
[4 : 2] compressor and signed digit adder to form the
final result.

A gate delay estimation similar to that of the adder
was performed to determine the multiplier latency.
The latency of the proposed multiplier was compared
to the system presented by Oberman [12]. In order

LUT || LUT LUT (X = 1/b)
1/sqrt(b) sqrt(b)) n/(k+1) x n/(k+1)
~2n/(k+1) ~2n/(L<+1)
~n/(k+1)
n n
b
n 1-bX

Mux selects weighting
and inverts for negative
coeficients

mu

"{

a/b
g= sqrt(b)
1/sqrt(b)

Figure 4: Division and elementary functions unit.

to perform an accurate comparison, the delay in the
final stage of the comparison multiplier incurred to
share the multiplier with the divide unit was not in-
cluded. The comparison multiplier requires 39 gate
delays while the proposed multiplier requires 32 gate
delays for extended precision results. The proposed
multiplier can compute double precision results in
29 gate delays.

5 Floating point division and other el-
ementary functions

To perform division and other elementary func-
tions, a design from the literature is adapted [13, 14].
This arithmetic unit (shown in Fig. 4) provides rapid
convergence based on higher-order Newton-Raphson
and series expansion techniques. The architecture pro-
vides fast and efficient function evaluation while al-
lowing high-throughput. The arithmetic unit achieves
fast computation by using parallel squaring, cubing,
and powering units. These units compute the higher-
order terms significantly faster than the traditional
approach of serial multipliers. All of the terms are
computed in parallel further reducing the latency. To
adapt the original design to the format proposed here,
a short adder is used to eliminate the redundancy from
the most significant part of the divisor operand by
subtracting the extra bits. This non-redundant part
is used to access the lookup table while the rest of
the operand is fully transformed into a non-redundant
form. In parallel, another adder is used to convert the

dividend into a non-redundant form as well. The unit
then works on those two operands as in the original de-
sign and at the end a signed digit adder is used instead
of the regular carry propagate adder. The delay of the
proposed unit is not much different from the original
design since the extra delay of the short adder at the
start is compensated by the reduced delay in the final
addition.

6 Conclusions

The proposed internal format with the proposed
algorithms and arithmetic units provide a complete
IEEE compatible arithmetic system. The elimination
of carry propagation from the arithmetic operations
enhances the performance of the functional units. The
proposed arithmetic unit architecture includes further
enhancements that increase the floating point per-
formance such as a hex based number format and
postponed rounding techniques. The proposed sys-
tem pushes the performance boundary of the design
space and provides a means to achieve the computa-
tional demands of numerically intensive applications.
The proposed addition and multiplication algorithms
are about 20% faster than the corresponding state of
the art.

References

[1] “IEEE standard for binary floating-point arith-
metic,” Aug. 1985. (ANSI/IEEE Std 754-1985).

[2] A. Avizienis, “Signed-digit number representa-
tions for fast parallel arithmetic,” IRE Trans-
actions on Electronic Computers, vol. EC-10,
pp- 389400, Sept. 1961.

[3] B. Parhami, “On the implementation of arith-
metic support functions for generalized signed-
digit number systems,” [EEE Transactions on
Computers, vol. 42, pp. 379-384, Mar. 1993.

[4] E. M. Schwarz, R. M. Smith, and C. A. Kry-
gowski, “The S/390 G5 floating point unit sup-
porting hex and binary architectures,” in Pro-
ceedings of the 14th IEEE Sympsoium on Com-
puter Arithmetic, Adelaide, Australia, pp. 258-
265, Apr. 1999.

[5] P. M. Farmwald, On the Design of High Per-
formance Digital Arithmetic Units. PhD thesis,
Stanford University, Aug. 1981.

[6] N. T. Quach, Reducing the latency of floating-
point arithmetic operations. PhD thesis, Stanford
University, Dec. 1993.

[7] H. Fahmy and M. Flynn, “Leading digit detec-
tion for floating point adders using signed digit
numbers.” Not yet published.

[8] A. M. Nielsen, D. W. Matula, C. N. Lyu,
and G. Even, “An IEEE compliant floating-
point adder that conforms with the pipelined
packet-forwarding paradim,” IEEE Transactions
on Computers, vol. 49, pp. 3347, Jan. 2000.

[9] S. F. Oberman and M. J. Flynn, “Reducing the
mean latency of floating-point addition,” Theo-
retical Computer Science, vol. 196, pp. 201-214,
1998.

[10] A. Beaumont-Smith, N. Burgess, S. Lefrere, and
C. C. Lim, “Reduced latency ieee floating-point
standard adder architectures,” in Proceedings of
the 14th IEEE Sympsoium on Computer Arith-
metic, Adelaide, Australia, pp. 35—42, Apr. 1999.

[11] P.-M. Seidel and G. Even, “How many logic levels
does floating-point addition require?,” in Proceed-

ings of the International Conference on Circuit
Design, pp. 142-149, 1998.

[12] S. F. Oberman, “Floating point division and
square root algorithms and implementation in the
AMD-K7T™ microprocessor,” in Proceedings of
the 14th IEEE Sympsoium on Computer Arith-
metic, Adelaide, Australia, pp. 106-115, Apr.
1999.

[13] A. A. Liddicoat and M. J. Flynn, “High-
performance floating point divide,” in Proceed-
ings of the Furomicro Symposium on Digital Sys-
tem Design, pp. 354-361, Sept. 2001.

[14] A. A. Liddicoat, High-Performance Arithmetic
for Division and The Elementary Functions. PhD
thesis, Stanford University, 2002. To be pub-
lished.

