

Design Trade-offs in Wireless Sensor Network System Development

Lakshmi Venkatraman

Robert Bosch Corporation Research and Technology Center Palo Alto, CA Lakshmi.Venkatraman@rtc.bosch.com

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal

and a second a second second

- Introduction
- System Design Constraints
- Sensor Node Architecture
- Protocol Design Issues
- Summary

Introduction

Overview

- System Design Constraints
- Sensor Node Architecture
- > Protocol Design Issues
- Summary

Jan-04

Building Automation

- HVAC Control
- Lighting Control
- Access Control
- Refrigeration Control

Industrial Automation

- Temperature Sensing and Control
- Pressure Sensing
- Level Sensing
- Machinery Monitoring

Power and Utility Automation

- Remote reading of Residential Meters
- Power Distribution Diagnostics

Environmental Monitoring

- → Air quality, water quality, and seismic activity
- Helps maintaining the integrity and safety of buildings, industrial facilities, roadways, water supplies, utilities, and other public infrastructure.

Tele-Health Monitoring and Diagnostics

- Significantly reduce overall medical costs by enabling homebased proactive monitoring and medical care
- Create personalized patient-based monitoring techniques (heart rate, respiration etc)

and a second a construction of the second second

Why is Bosch interested?

Several wire-based sensor/actuator network products in

- Building automation
- Industrial automation
- Security systems
- Automotive

All share the disadvantages to be

- Expensive to install
- Inflexible once installed
- Limited in size, complexity, and functionality
- Obtrusive in existing infrastructure

BUT a wireless channel clearly creates challenges in terms of

- Reliability
- Security

and a second a construction of the second second

Bandwidth

6

BOS

What factors outweigh these challenges..

New functions

Wireless data collection Collective operation of simple sensors for complex tasks

Scalability

Multi-hop networks 10 -1000s of devices

Profitability

Low installation cost Flexibility

Robustness

Ad hoc Network Self Reconfiguration Distributed Intelligence

New market opportunities

Building Control Networks

- Tens to thousands of nodes
- Many device types (sensors, actuators)
- Low effective data rate
- Regular low-priority data

Thermo technology

- Climate control systems
- Tens to hundreds of nodes
- Frequent communication of non-critical data

Security Systems

- Tens up to several thousand nodes
- Asynchronous high-priority data
- Periodic low-priority data
- Safety-critical products

Introduction

System Design Constraints

- Sensor Node Architecture
- > Protocol Design Issues
- Summary

Nodes

- Application specific sensors
- → Few tens to thousands, small, low cost, "smart"
- → Low power: 2x AA
- Static nodes

Base station

- Control of network
- Data aggregation and interpretation

Network protocol

- Ad hoc, multi hop operation
- → Self organizing, self healing
- Scalable network

Interfaces to other networks

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal

and a second second

System Cost

- No redundant nodes
- Low cost microcontroller, low available memory
- Expensive labor: Infrequent maintenance requirements
- Limited technical expertise of installers, no configuration tools.

Marketing Issues

- Ease of use: user friendly functioning
- Low latency for control commands from user
- System for global market
- Secure communication
- Network life longevity
- Additional appealing features

and a construction and a construction of the theory of the

[©] Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal

BOSCH

Application specific requirements

- Latency requirements for high priority data
- Periodic monitoring of nodes
- Detection of channel jamming

Government regulations on frequency usage

- Limited output power
 - Depending on frequency band, limitations on output power
 - Transmitter field strength is restricted to –1dBm when spread spectrum is not used (FCC 15.249).
- Duty cycle restrictions
- Limited channel width
- Few available channels

and a second a construction of the second second

Latency vs Low Power

- \rightarrow Power limitation \rightarrow Sleep as much as possible
- → Low latency requirements \rightarrow Wakeup frequently

Frequent low priority data vs Low Power

- → Frequent low priority data → Communication overhead
- → Power limitation \rightarrow Low communication overhead

Ad hoc, reconfigurable vs Low Power, memory

- → Ad hoc, reconfigurable → Complex algorithms, high communication overhead
- -> Power limitation \rightarrow Low communication overhead

- Introduction
- System Design Constraints
- Sensor Node Architecture
- > Protocol Design Issues
- Summary

- Low power consumption
- Low cost nodes that use cheap and commonly available batteries
- → Small physical size to facilitate deployment
- Compliance to standards and regulations
- Single design for international markets
- Ability to maintain time synchronization with other nodes
- Operate over wide temperature ranges

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal

and an end of the second se

BOSCH

→ Lithium-Ion

HOURS OF LIFE ------

- Constant voltage over life.
- Works at lower temperatures than alkaline batteries.
- → More expensive.
- Hard to determine remaining capacity.

Alkaline

- → Cheap, commonly available.
- Discharge curve helps determine remaining capacity.
- Requires nodes to operate over wide voltage range.

Energy Scavenging:

http://bwrc.eecs.berkeley.edu/People/Faculty/jan/

Jan-04

Power consumption

- → Active Mode Current : varies from 150uA to 2.5mA.
- → Sleep Mode Current : varies from 1uA 50uA.
- → Sleep mode is critical since it accounts for about 99% of life time.

Wakeup Time

- Fast transition from active to power down modes and vice-versa.
- Helps sleep during intermittent periods of inactivity.

Speed

and a second a second a second se

- → Typical applications run on low clock rates (1MHz- 8MHz).
- Determined by real-time activities plus time required to execute security algorithms.

Memory

- Program memory size and types (Flash/ROM).
- → Data memory size (RAM).

Peripherals

- → I/O ports to interface to radio, sensors and any other device.
- Timers to support timed events.
- Counter sizes (8bit/ 16 bit): counter overflow determines frequency of wakeups.

Supply Voltage Range

 Low voltage operation increases longevity of alkaline battery powered nodes.

Power consumption

 For low power operation, receive and transmit energy is comparable.

Data rate

and a second a second a second se

→ Increased data rates \Rightarrow Less transmission times

Wakeup time

Most frequently performed act in order to check for signal in air.

Modulation Techniques

- Amplitude Modulation (AM): Simple to design, lesser bandwidth usage.
- → Frequency Shift Keying (FSK): Better noise immunity.
- Gaussian FSK (GFSK): Desirable for systems with limited bandwidth

Operation in desired Frequencies

- Operable in different frequency bands
- Multi-channel operation needed for channel hopping.

Range

- Desired communication range of 30-50 meters indoor.
- Desirable to have adjustable power levels for transmission.

Supply Voltage Range

 Low voltage operation increases longevity of alkaline battery powered nodes.

Crystal Inaccuracy Issues

- Precise reference needed for frequency synthesizer
- Inaccurate crystals cause drift in reference frequency
- Drifts due to temperature changes, aging
- → Accurate crystal \Rightarrow Higher cost

Challenges

 Long periods of silence, drastic temperature changes could result in frequency mismatch of transmitter and receiver

Solution

- Temperature compensation based on manufacturer inputs
- Periodic adjustment of frequencies based on measured drifts

Serious problem : Clocks drift due to crystal inaccuracies.

- Periodic synchronization needed.
- → Increased crystal accuracy \Rightarrow increased cost.
- → Less accurate crystal \Rightarrow more drift.

Solutions:

- More frequent synchronization messages.
- Longer time slots ("receiver waits for sender").

Example:

- → Communication of 20 bytes requires 4.17ms @ 76.8kbps.
- → For a 20ppm crystal, in half hour, clock drifts 36ms max.
- Worst case drift between 2 nodes is 72ms.
- Required slot length is 77ms approximately!!!

BOS

- Introduction
- System Design Constraints
- Sensor Node Architecture
- Protocol Design Issues
- Summary

and a second a second a second se

Channel access mechanisms

- Most common MAC protocols are TDMA or contention based.
- Contention based schemes are inherently less energy efficient.
- Time synchronization required for minimal energy consumption.
- For static network TDMA based scheduling favorable.

Routing mechanisms

- Data Gathering, Data-centric storage in Sensor Networks
- Directed diffusion
- Geographical and Energy Aware Routing
- Negotiation-based Protocols for Disseminating Information

Mesh Networks or Tree

- Choice based on application requirements.
- → Tree topologies help in optimal data aggregation.
- Hierarchical clustering is beneficial for scalable networks

BOSCH

Advantages

- -> Less information exchange \Rightarrow Low communication overhead
- No overhead in gathering data at a central location
- Faster network formation
- Beneficial for dynamic networks

Disadvantages

- Less efficient topologies based on local information
- Reconfiguration could be complex for TDMA based networks.
- Higher algorithmic complexity at node
- Possibly higher memory requirements at the node

Advantages

- Complete Network Information available
- Very efficient topologies, efficient load balancing
- Determine optimal communication schedules
- Optimal reconfiguration based on link qualities and current network dynamics
- Optimizations in data aggregation
- Base station could execute very complex algorithms to determine optimal topologies
- Base station has capability to store large amounts of data

Disadvantages

- Overhead in gathering data at a central location
- Increased Network formation time.
- Increased overhead in frequently changing networks.

Static networks could benefit from a centralized control.

Most challenging and critical phase of the system!

Challenges

- → Efficient network discovery process.
 - Discover valid network nodes.
 - Reject nodes not belonging to the system.
- Neighbor discovery and link assessment process.
- Aggregation of link statistics information
- Algorithms to compute energy efficient topologies
- Dissemination of configuration information to the nodes.

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal

and the second sec

Study of channel behavior*

- Link quality study is crucial for node survivability
- Determine metrics and ways to grade channel
- Helps determining appropriate channel coding schemes

Energy Efficient Link Assessment*

- Neighbor discovery and measurement of link quality (SNR, PSR)
- Nodes are assigned codes (constant weight codes)
- Time slotted communication of nodes to determine link qualities
- Reception and Transmission pattern for each node based on assigned codes
- Link quality information calculated based on packets received from neighbors
- Base station aggregates this information

Papers available on http://www.stanford.edu/~abtink/ *Work in collaboration with Prof Balaji and his students, Stanford University

Example: Impact of data rate on energy budget:

- → Pay load: 20 bytes, (Manchester encoding: 40 bytes)
- → Transmit and receive times @ 76.8 kbps : 4.17ms.
- → Transmit energy @ 76.8 kbps 4.17ms * 16.5mA = 68.8uAs.
- Transmit and receive times @ 4.8 kbps: 66.67 ms.
- → Transmit energy @ 4.8 kbps: 66.67ms * 16.5mA = 1100.1uAs.

uAs = micro Ampere seconds.

Jan-04

- Number of Nodes: 100
- Pay load: 20 bytes

System using 76.8 kbps

- → At **76.8kbps**, approximately 10 milliseconds slot required.
- → Every node gets to communicate once in 1 second.

System using 4.8 kbps

- → At **4.8 kbps**, approximately 70 milliseconds slot required
- Every node gets to communicate once in 7 seconds.

	_					_						 _			 				_	_	
1	2	3	 1	2	3																

1 2 3 100	1	2	3		100
-----------	---	---	---	--	-----

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal

and a second second

BOS

Requirements

Security

- → Confidentiality: Efficient encryption schemes
- Authentication of unicast, broadcast and multicast messages
- Replay prevention
- Message Integrity
- In-Network Processing
- Secure bootstrapping of Keys

Challenges

and a second a second a second se

Jan-04

- Very low available memory
- Low computational capabilities
- Scarce power

32

Periodic Communication

- Periodic monitoring of every node and link
- Periodicity as frequent as every 2-3 minutes
- Energy overhead due to periodic communication
- Collision free communication of several nodes in a small time
- → Lower data rates also pose a big challenge here.

Network Auto configuration

- Possibility to add new nodes during network operation
- Reconfiguration of network in case of link/node failures

- Introduction
- → Regulatory Issues
- Architectural Issues
- > Protocol Design Issues
- Summary

- → Most industry applications need static sensor networks.
- → Redundant nodes \Rightarrow Redundant cost.
- System design driven by:
 - Application requirements
 - Cost
 - Regulatory constraints and
 - Market factors

Your questions, please.