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outline

• “Ears” for sensor network systems: a brief detour
• Introduction

– Light, photons, noise, bandwidth
– Current signal processing and translinear networks

• Systems
– Polarization contrast chip
– Spatial-temporal processing 
– Ego-motion compensation chip in a balloon observatory
– Network architecture for distributed feature extraction.

• Conclusions
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smart microphone project

Gradient Flow 
ASIC

Cross-Correlation ASIC

Auto-Correlation 
Wake-Up ASIC

4 MEMs 
Microphones

Power Strobe Circuit

4 chamber acoustic horn

http://www.signalsystemscorp.com/acoustic_surv.htm
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what did we learn?

• COTS can take you up to a point.
• DSP and FPGA also take you up to a point, custom 

analog or digital design is necessary.
• Event based, one bit digital processing.
• Interfaces are critical! –necessity for system level 

design-
• Algorithm exploration is necessary with real data and 

the actual application environment.
• Wireless data communication is expensive; do the 

computation locally if you can!
• Analog subthreshold CMOS works well if designed 

properly!
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CCxxxx: 
Chipcon Datasheets
www.chipcon.com

UWB: 
03267r6P802-15_TG3a
Multi-band-OFDM-CFP
Presentation

the energy cost of bits –in wires and wireless-
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the not-so-state-of-the-art not-eye

http://www.clairex.com/

CrossBow MTS310CASensorBoard

Clairex CdSe photoconductor
~ 2 mW power (light ON)
~ 47 uW power (light OFF)
~ 10 kHz bandwidth
5 Volts power supply (signal)
10 bits ADC, 15 KS/s

13 nJ per bit of light data –NOT information-

http://www.xbow.com
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“eyes” for sensor network systems

• Is there something interesting in the 
environment ?
– in a specific class of objects

• Where is it ?
• What is it ?

often it is about a few bits 
in the right place at the right time

Eyes: sensory structures capable of spatial vision, i.e. 
imaging the environment, no matter how crude the image is

Land and Nilsson, Animal Eyes
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the way natural eyes see

• Continuous sensing

• Polarization sensitivity
• Contrast sensitivity

• Local gain control
• Spatial filtering

• Temporal filtering
• Sampling on demand
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light, photons, photon shot-noise, bandwidth …
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analog, digital and all that …
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subthreshold CMOS

• Current is exponential function of the terminal voltages Vs, Vb, Vg, Vd
• Large dynamic range
• High gain (transconductance)
• Low saturation voltage Vdsat ~100mV
• Lossless channel and source/drain symmetry (diffusive networks)
• Zero conductance control node (gate); possibility of floating gate for 

long term charge storage
• Mobility considerations
• Frequency limitations
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subthreshold MOS and bipolar characteristics
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symmetric MOS model
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non-linear CMOS resistors and translinear grids

( )exph n C n r
PQ Q P

v T

S V V
I I I

S V

κ κ⎛ ⎞ ⎡ ⎤−= −⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠

NMOS only “diffusor/conveyor”

Vr − VP = G1 IP

Vr − VQ = G1 IQ

VP − VQ = G2 IPQ

IPQ =
G1

G2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ IQ −IP( )

Linear conductances

A.G. Andreou and K.A. Boahen, “Translinear circuits in 
subthreshold CMOS,” Journal of Analog Integrated Circuits 
and Signal Processing, Vol. 9, pp. 141-166, March 1996.
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1D spatial averaging network
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sensor level processing: what and where
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seeing in ways that we can’t!

Mantis Shrimp

L.B. Wolff and A.G. Andreou, “Polarization camera sensors,” Image 
and Vision Computing, Vol. 13, No. 6, pp. 497-510, August 1995.
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doing things in front of the pixel: micropolarizers

Z. Kalayjian and A.G. Andreou, “Integrated 
imaging linear polarimeter," ISA Transactions, 
Vol. 38, pp. 203-209, 1999.

A.G. Andreou and Z.K. Kalayjian, “Polarization imaging: 
principles and integrated polarimeters,” IEEE Sensors 
Journal, Vol. 2, No. 6, pp. 566-576, December 2002. 
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current-mode translinear processing 
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sensor level processing: what and where
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spatial/temporal filter

Detection Buffering / Amplification

Spatial Filtering

Scanning

Temporal Filtering
33 x 30 pixels 0.5 micron 
linear capacitor triple metal CMOS
50 micron cell pitch (2 x 2 mm die)

Moving “t”
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sensor level processing: what and where
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doing things in the sides

A.G. Andreou, R.C. Meitzler, K. Strohbehn and K.A. Boahen, “Analog VLSI neuromorphic
image acquisition and pre-processing systems,” Neural Networks, Vol. 8, No. 7-8, pp. 1323-
1347,  1995. 
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Flare Genesis Observatory

• Balloon based observatory
• Truly autonomous – low bit rate link -

– A three stage hierarchical system of sun orientation and tracking

– Two “Eyes” for finding the sun and motion stabilization + Kodak Megaplus
CCD camera

• Solar power; command and control power budget ~1W

http://sd-www.jhuapl.edu/FlareGenesis/flare.html
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networks of nodes ….constraints ….

100s0.01Latency (ms)

10010Energy per bit (nJ)

10010Distance (m)

1200Data rate (Mbits/s)

COTS (Chipcon 24xx)UWB (Multiband OFDM)Rates

RF link constraints

Image sensor constraints (1280x1024 pixels, 24 bit/pixel, 10000 frames/s)

0.00001 (pixel)0.1 (frame rate)Latency (ms)

2020 x (bits/frame)Energy per bit (pJ)

0.010.01Distance (m)

variable24,000Data rate (Mbits/s)

Anisochronous event basedScannedRates



2004© Andreas G. Andreou 27

analog, digital and all that …
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digital event based imager
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high slew rate gain at low energy costs
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the network is the architecture

Local
Processor

Encoder

Communication
Processor

Decoder

ALL COMPUTATION DONE ON  THE ADDRESSES OF THE EVENTS
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distributed network processing

• Information is encoded in a stream of events, 
the address of each pixel node
– Address Event Representation
– Asynchronous on demand

• Programmable communication processors 
transform and route the events

• Local Processors perform spatial/temporal 
integration and normalization

• Point-to-point and broadcast links provide 
high speed interconnects
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simulation …
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feature extraction through projective fields

D.H. Goldberg, G.C. Cauwenberghs and A.G. Andreou, 
“Probabilistic synaptic weighting in a reconfigurable 
network of VLSI integrate-and-fire neurons,” Neural 
Networks, Vol. 14, No. 6-7, pp. 781-793,  July 2001 

Think of computation as 
part of the MAC layer
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results

Input Rectifed
Laplacian
(Matlab)

PrAER
(Matlab)

PrAER
chip
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and something about biology: blow-fly photoreceptor

P.A. Abshire and A.G. Andreou,  “Capacity and energy cost of 
information in biological and silicon photoreceptors ," Proceedings 
of the IEEE, Vol. 89, No. 7, pp. 1052-1064, July 2001.
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some final thoughts

• One size perhaps does not fit all!
• With multiple interacting points of view, is worth revisiting 

“polarization vision”.
• Asynchronous on demand systems may be preferable to random 

access or scanned for giving information to the question: “is there 
anything of interest out there ?”

• CMOS imagers can be cheap and can be designed to specific 
applications; 0.5 micron CMOS may be a sweet spot for garden 
variety “eyes”.

• Increased physical complexity; more than just visible; large area 
sensor devices conformal to non planar surfaces.

• What good are “eyes” without optics or when they can’t move?…. 
Good questions! “eye” designers have plenty things to do. 
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subthreshold CMOS challenges: noise
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energy costs per pixel
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•Bandwidth scales linearly with computational branch current
•Power will scale linearly with computational branch voltage
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Transduction and Dynamic Range Compression (I): Temporal

1. Average signal in time and store the state -range- on a quasi floating gate (Vfb)
2. Employ negative feedback to position the DC operating point.
3. Amplifier-computational branch-: single stage biased in substhreshold (100nA)

Delbruck and Mead 96 
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W per pixel
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Non-Uniformity Correction Using FGMOS

Cohen & Cauwenberghs 2001

• An MOS mirror with FGMOS transistor (M2) 
injected using impact ionization (tunneling will 
work as well).
• NO power cost  during operation.
• Technique can be applied to both current 
mode and voltage mode pixels
• Energy cost only with initial calibration
• Calibration takes ~2000 iterations for all pixels 
on the chip and each pixel takes about 1sec 
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Transduction and Dynamic Range Compression (I): 
Spatial -network based-

( )out comp in bg bg pd comp compI I I I P I V I V Nξ→ → = +

1. Average using a shunting network 
2. Employ negative feedback and log-antilog amplifier to do the ratio computation
3. Note! kernel size does not matter as we normalize everything to the computational 

current and this gets steered from one pixel to the other.
4. Compression function not tanh but something that can be synthesized in CM circuits!
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Center-ON-OFF surround with local 
competition and rectification

1. An alternative to resistive 
grids we can explicitely
compute the Laplacian using 
simple scaled mirrors and 
summing the currents.

2. Added local wiring 
complexity
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