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Overview

• Mathematical and computational theory, and applications to combi-
natorial, non-convex and nonlinear problems

• Semidefinite programming

• Real algebraic geometry

• Duality and certificates

Topics

1. Convexity and duality

2. Quadratically constrained quadratic programming

3. From duality to algebra

4. Algebra and geometry

5. Sums of squares and semidefinite programming

6. Polynomials and duality; the Positivstellensatz
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Discrete Problems: LQR with Binary Inputs

• linear discrete-time system x(t + 1) = Ax(t) + Bu(t) on interval
t = 0, . . . , N

• objective is to minimize the quadratic tracking error

N−1∑

t=0

(
x(t)− r(t)

)T
Q
(
x(t)− r(t)

)

• using binary inputs

ui(t) ∈ {−1, 1} for all i = 1, . . . ,m, and t = 0, . . . , N − 1
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Nonlinear Problems: Lyapunov Stability
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Graph problems

Graph problems appear in many areas: MAX-CUT, independent set, cliques,
etc.

MAX CUT partitioning

• Partition the nodes of a graph in two disjoint
sets, maximizing the number of edges between
sets.

• Practical applications (circuit layout, etc.)

• NP-complete.

How to compute bounds, or exact solutions, for this kind of problems?
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polynomial programming

A familiar problem

minimize f0(x)

subject to fi(x) ≤ 0 for all i = 1, . . . ,m

hi(x) = 0 for all i = 1, . . . , p

objective, inequality and equality constraint functions are all polynomials
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polynomial nonnegativity

first, consider the case of one inequality; given f ∈ R[x1, . . . , xn]

does there exist x ∈ Rn such that f (x) < 0

• if not, then f is globally non-negative

f (x) ≥ 0 for all x ∈ Rn

and f is called positive semidefinite or PSD

• the problem is NP-hard, but decidable

• many applications
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certificates

the problem

does there exist x ∈ Rn such that f (x) < 0

• answer yes is easy to verify; exhibit x such that f (x) < 0

• answer no is hard; we need a certificate or a witness
i.e, a proof that there is no feasible point
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Sum of Squares Decomposition

if there are polynomials g1, . . . , gs ∈ R[x1, . . . , xn] such that

f (x) =

s∑

i=1

g2
i (x)

then f is nonnegative

an easily checkable certificate, called a sum-of-squares (SOS) decomposi-
tion

• how do we find the gi

• when does such a certificate exist?
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example

we can write any polynomial as a quadratic function of monomials

f = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

=



x2

xy

y2



T 


4 2 −λ
2 −7 + 2λ −1
−λ −1 10





x2

xy

y2




= zTQ(λ)z

which holds for all λ ∈ R

if for some λ we have Q(λ) � 0, then we can factorize Q(λ)
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example, continued

e.g., with λ = 6, we have

Q(λ) =




4 2 −6
2 5 −1
−6 −1 10


 =




0 2
2 1
1 −3



[

0 2 1
2 1 −3

]

so

f =



x2

xy

y2



T 


0 2
2 1
1 −3



[

0 2 1
2 1 −3

]

x2

xy

y2




=

∥∥∥∥
[

2xy + y2

2x2 + xy − 3y2

]∥∥∥∥
2

=
(
2xy + y2)2

+
(
2x2 + xy − 3y2)2

which is an SOS decomposition
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sum of squares and semidefinite programming

suppose f ∈ R[x1, . . . , xn], of degree 2d

let z be a vector of all monomials of degree less than or equal to d

f is SOS if and only if there exists Q such that

Q � 0

f = zTQz

• this is an SDP in standard primal form

• the number of components of z is
(n+d
d

)

• comparing terms gives affine constraints on the elements of Q
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sum of squares and semidefinite programming

if Q is a feasible point of the SDP, then to construct the SOS representation

factorize Q = V V T , and write V =
[
v1 . . . vr

]
, so that

f = zTV V Tz

= ‖V Tz‖2

=

r∑

i=1

(vTi z)2

• one can factorize using e.g., Cholesky or eigenvalue decomposition

• the number of squares r equals the rank of Q
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example

f = 2x4 + 2x3y − x2y2 + 5y4

=



x2

xy

y2



T 

q11 q12 q13
q12 q22 q23
q13 q23 q33





x2

xy

y2




= q11x
4 + 2q12x

3y + (q22 + 2q13)x2y2 + 2q23xy
3 + q33y

4

so f is SOS if and only if there exists Q satisfying the SDP

Q � 0 q11 = 2 2q12 = 2

2q12 + q22 = −1 2q23 = 0

q33 = 5
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convexity

the sets of PSD and SOS polynomials are a convex cones; i.e.,

f, g PSD =⇒ λf + µg is PSD for all λ, µ ≥ 0

let Pn,d be the set of PSD polynomials of degree ≤ d

let Σn,d be the set of SOS polynomials of degree ≤ d

• both Pn,d and Σn,d are convex cones in RN where N =
(n+d
d

)

• we know Σn,d ⊂ Pn,d, and testing if f ∈ Pn,d is NP-hard

• but testing if f ∈ Σn,d is an SDP (but a large one)
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polynomials in one variable

if f ∈ R[x], then f is SOS if and only if f is PSD

example

all real roots must have even multiplicity, and highest coeff. is positive

f = x6 − 10x5 + 51x4 − 166x3 + 342x2 − 400x + 200

= (x− 2)2(x− (2 + i)
)(
x− (2− i)

)(
x− (1 + 3i)

)(
x− (1− 3i)

)

now reorder complex conjugate roots

= (x− 2)2(x− (2 + i)
)(
x− (1 + 3i)

)(
x− (2− i)

)(
x− (1− 3i)

)

= (x− 2)2((x2 − 3x− 1)− i(4x− 7)
)(

(x2 − 3x− 1) + i(4x− 7)
)

= (x− 2)2((x2 − 3x− 1)2 + (4x− 7)2)

so every PSD scalar polynomial is the sum of one or two squares
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quadratic polynomials

a quadratic polynomial in n variables is PSD if and only if it is SOS

because it is PSD if and only if

f = xTQx

where Q ≥ 0

and it is SOS if and only if

f =
∑

i

(vTi x)2

= xT
(∑

i

viv
T
i

)
x
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some background

In 1888, Hilbert showed that PSD=SOS if and only if

• d = 2, i.e., quadratic polynomials

• n = 1, i.e., univariate polynomials

• d = 4, n = 2, i.e., quartic polynomials in two variables

d
n\ 2 4 6 8

1 yes yes yes yes
2 yes yes no no
3 yes no no no
4 yes no no no

• in general f is PSD does not imply f is SOS
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some background

• Connections with Hilbert’s 17th problem, solved by Artin: every PSD
polynomial is a SOS of rational functions.

• If f is not SOS, then can try with gf , for some g.

• For fixed f , can optimize over g too

• Otherwise, can use a “universal” construction of Pólya-Reznick.

More about this later.



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

x

M(x,y,1)

y

19 Sum of Squares S. Lall, Stanford 2003.11.12.04

The Motzkin Polynomial

A positive semidefinite polynomial,
that is not a sum of squares.

M (x, y) = x2y4 + x4y2 + 1− 3x2y2

• Nonnegativity follows from the arithmetic-geometric inequality
applied to (x2y4, x4y2, 1)

• Introduce a nonnegative factor x2 + y2 + 1

• Solving the SDPs we obtain the decomposition:

(x2 + y2 + 1)M (x, y) = (x2y − y)2 + (xy2 − x)2 + (x2y2 − 1)2+

+
1

4
(xy3 − x3y)2 +

3

4
(xy3 + x3y − 2xy)2
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The Univariate Case:

f (x) = a0 + a1x + a2x
2 + a3x

3 + · · · + a2dx
2d

=




1
x
...

xd




T 


q00 q01 . . . q0d
q01 q11 . . . q1d

... ... . . . ...
q0d q1d . . . qdd







1
x
...

xd




=

d∑

i=0

( ∑

j+k=i

qjk

)
xi

• In the univariate case, the SOS condition is exactly equivalent to non-
negativity.

• The matrices Ai in the SDP have a Hankel structure. This can be
exploited for efficient computation.



21 Sum of Squares S. Lall, Stanford 2003.11.12.04

About SOS/SDP

• The resulting SDP problem is polynomially sized (in n, for fixed d).

• By properly choosing the monomials, we can exploit structure (sparsity,
symmetries, ideal structure).

• An important feature: the problem is still a SDP if the coefficients of
F are variable, and the dependence is affine.

• Can optimize over SOS polynomials in affinely described families.

For instance, if we have p(x) = p0(x) + αp1(x) + βp2(x), we can
“easily” find values of α, β for which p(x) is SOS.

This fact will be crucial in everything that follows. . .
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Global Optimization

Consider the problem
min
x,y

f (x, y)

with

f (x, y) := 4x2 − 21

10
x4 +

1

3
x6 + xy − 4y2 + 4y4

• Not convex. Many local minima. NP-hard.

• Find the largest γ s.t. f (x, y)− γ is SOS

• Essentially due to Shor (1987).

• A semidefinite program (convex!).

• If exact, can recover optimal solution.

• Surprisingly effective.

Solving, the maximum γ is -1.0316. Exact value.
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Coefficient Space

Let fαβ(x) = x4 + (α + 3β)x3 + 2βx2 − αx + 1.

What is the set of values of (α, β) ∈ R2 for which fαβ is PSD? SOS?

To find a SOS decomposition:

fα,β(x) = 1− αx + 2βx2 + (α + 3β)x3 + x4

=




1
x

x2



T 

q11 q12 q13
q12 q22 q23
q13 q23 q33






1
x

x2




= q11 + 2q12x + (q22 + 2q13)x2 + 2q23x
3 + q33x

4

The matrix Q should be PSD and satisfy the affine constraints.
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The feasible set is given by:





(α, β) | ∃λ s.t.




1 −1
2 α β − λ

−1
2 α 2λ 1

2 (α + 3β)

β − λ 1
2 (α + 3β) 1


 � 0





-2

0

2

0

1

0

0.5

1

1.5

ë

ì

õ
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What is the set of values of (α, β) ∈ R2 for which fαβ PSD? SOS?

Recall: in the univariate case PSD=SOS, so here the sets are the same.

• Convex and
semialgebraic.

• It is the projection of a
spectrahedron in R3.

• We can easily test mem-
bership, or even optimize
over it!

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5
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36 a5 b+4 a6+192 a2+576 a b−512 b2+...−288 b5 = 0

Defined by the curve: 288β5 − 36α2β4 + 1164αβ4 + 1931β4 − 132α3β3 + 1036α2β3 + 1956αβ3 − 2592β3 − 112α4β2 +

432α3β2 + 1192α2β2− 1728αβ2 + 512β2− 36α5β+ 72α4β+ 360α3β− 576α2β− 576αβ− 4α6 + 60α4− 192α2− 256 = 0
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Lyapunov Stability Analysis

To prove asymptotic stability of ẋ = f (x),

V (x) > 0 x 6= 0

V̇ (x) =
(
∂V
∂x

)T
f (x) < 0, x 6= 0

• For linear systems ẋ = Ax, quadratic Lyapunov functions V (x) =
xTPx

P > 0, ATP + PA < 0.

• With an affine family of candidate polynomial V , V̇ is also affine.

• Instead of checking nonnegativity, use a SOS condition.

• Therefore, for polynomial vector fields and Lyapunov functions, we can
check the conditions using the theory described before.



27 Sum of Squares S. Lall, Stanford 2003.11.12.04

Lyapunov Example

A jet engine model (derived from Moore-Greitzer),
with controller:

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y

Try a generic 4th order polynomial Lyapunov function.

V (x, y) =
∑

0≤j+k≤4

cjkx
jyk

Find a V (x, y) that satisfies the conditions:

• V (x, y) is SOS.

• −V̇ (x, y) is SOS.

Both conditions are affine in the cjk. Can do this directly using SOS/SDP!
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Lyapunov Example

After solving the SDPs, we obtain a Lyapunov function.

V = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3 + 2.5189x2y − 0.34069xy2

+0.61188y3 +0.47537x4−0.052424x3y+0.44289x2y2 +0.0000018868xy3 +0.090723y4
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Lyapunov Example

Find a Lyapunov function for

ẋ = −x + (1 + x) y

ẏ = −(1 + x)x.

we easily find a quartic polynomial

V (x, y) = 6x2 − 2xy + 8y2 − 2y3 + 3x4 + 6x2y2 + 3y4.

Both V (x, y) and (−V̇ (x, y)) are SOS:

V (x, y) =




x
y
x2

xy
y2




T 


6 −1 0 0 0
−1 8 0 0 −1

0 0 3 0 0
0 0 0 6 0
0 −1 0 0 3







x
y
x2

xy
y2



, −V̇ (x, y) =




x
y
x2

xy




T 


10 1 −1 1
1 2 1 −2
−1 1 12 0

1 −2 0 6







x
y
x2

xy




The matrices are positive definite, so this proves asymptotic stability.
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Extensions

• Other linear differential inequalities (e.g. Hamilton-Jacobi).

• Many possible variations: nonlinear H∞ analysis, parameter depen-
dent Lyapunov functions, etc.

• Can also do local results (for instance, on compact domains).

• Polynomial and rational vector fields, or functions with an underlying
algebraic structure.

• Natural extension of the LMIs for the linear case.
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Example

minimize x1x2

subject to x1 ≥ 0

x2 ≥ 0

x2
1 + x2

2 ≤ 1

• The objective is not convex.

• The Lagrange dual function is

g(λ) = inf
x

(
x1x2 − λ1x1 − λ2x2 + λ3(x2

1 + x2
2 − 1)

)

=




−λ3 − 1

2

[
λ1

λ2

]T [
2λ3 1

1 2λ3

]−1 [
λ1

λ2

]
if λ3 >

1
2

−∞ otherwise, except bdry
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Example, continued

The dual problem is

maximize g(λ)

subject to λ1 ≥ 0

λ2 ≥ 0

λ3 ≥
1

2

• By symmetry, if the maximum g(λ) is attained, then λ1 = λ2 at
optimality

• The optimal g(λ?) = −1
2 at λ? = (0, 0, 1

2)

• Here we see an example of a duality gap; the primal optimal is strictly
greater than the dual optimal
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Example, continued

It turns out that, using the Schur complement, the dual problem may be
written as

maximize γ

subject to



−2γ − 2λ3 λ1 λ2

λ1 2λ3 1
λ2 1 2λ3


 > 0

λ1 > 0

λ2 > 0

We’ll see a systematic way to convert a dual problem to an SDP, whenever
the objective and constraint functions are polynomials.
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The Dual is Not Intrinsic

• The dual problem, and its corresponding optimal value, are not prop-
erties of the primal feasible set and objective function alone.

• Instead, they depend on the particular equations and inequalities used

To construct equivalent primal optimization problems with different duals:

• replace the objective f0(x) by h(f0(x)) where h is increasing

• introduce new variables and associated constraints, e.g.

minimize (x1 − x2)2 + (x2 − x3)2

is replaced by
minimize (x1 − x2)2 + (x4 − x3)2

subject to x2 = x4

• add redundant constraints
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Example

Adding the redundant constraint
x1x2 ≥ 0 to the previous example
gives

minimize x1x2

subject to x1 ≥ 0

x2 ≥ 0

x2
1 + x2

2 ≤ 1

x1x2 ≥ 0

Clearly, this has the same primal feasible set and same optimal value as
before
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Example Continued

The Lagrange dual function is

g(λ) = inf
x

(
x1x2 − λ1x1 − λ2x2 + λ3(x2

1 + x2
2 − 1)− λ4x1x2

)

=





−λ3 − 1
2

[
λ1

λ2

]T [
2λ3 1− λ4

1− λ4 2λ3

]−1 [
λ1

λ2

]
if 2λ3 > 1− λ4

−∞ otherwise, except bdry

• Again, this problem may also be written as an SDP. The optimal value
is g(λ?) = 0 at λ? = (0, 0, 0, 1)

• Adding redundant constraints makes the dual bound tighter

• This always happens! Such redundant constraints are called valid
inequalities.
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Constructing Valid Inequalities

The function f : Rn→ R is called a valid inequality if

f (x) ≥ 0 for all feasible x

Given a set of inequality constraints, we can generate others as follows.

(i) If f1 and f2 define valid inequalities, then so does h(x) = f1(x)+f2(x)

(ii) If f1 and f2 define valid inequalities, then so does h(x) = f1(x)f2(x)

(iii) For any f , the function h(x) = f (x)2 defines a valid inequality

Now we can use algebra to generate valid inequalities.
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Valid Inequalities and Cones

• The set of polynomial functions on Rn with real coefficients is denoted
R[x1, . . . , xn]

• Computationally, they are easy to parametrize. We will consider poly-
nomial constraint functions.

A set of polynomials P ⊂ R[x1, . . . , xn] is called a cone if

(i) f1 ∈ P and f2 ∈ P implies f1f2 ∈ P
(ii) f1 ∈ P and f2 ∈ P implies f1 + f2 ∈ P

(iii) f ∈ R[x1, . . . , xn] implies f2 ∈ P
It is called a proper cone if −1 6∈ P

By applying the above rules to the inequality constraint functions, we can
generate a cone of valid inequalities
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Algebraic Geometry

• There is a correspondence between the geometric object (the feasible
subset of Rn) and the algebraic object (the cone of valid inequalities)

• This is a dual relationship; we’ll see more of this later.

• The dual problem is constructed from the cone.

• For equality constraints, there is another algebraic object; the ideal
generated by the equality constraints.

• For optimization, we need to look both at the geometric objects (for
the primal) and the algebraic objects (for the dual problem)
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Cones

• For S ⊂ Rn, the cone defined by S is

C(S) =
{
f ∈ R[x1, . . . , xn]

∣∣ f (x) ≥ 0 for all x ∈ S
}

• If P1 and P2 are cones, then so is P1 ∩ P2

• A polynomial f ∈ R[x1, . . . , xn] is called a sum-of-squares (SOS) if

f (x) =

r∑

i=1

si(x)2

for some polynomials s1, . . . , sr and some r ≥ 0. The set of SOS
polynomials Σ is a cone.

• Every cone contains Σ.
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Cones

The set monoid{f1, . . . , fm} ⊂ R[x1, . . . , xn] is the set of all finite
products of polynomials fi, together with 1.

The smallest cone containing the polynomials f1, . . . , fm is

cone{f1, . . . , fm} =

{
r∑

i=1

sigi | s0, . . . , sr ∈ Σ,

gi ∈monoid{f1, . . . , fm}
}

cone{f1, . . . , fm} is called the cone generated by f1, . . . , fm
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Explicit Parametrization of the Cone

• If f1, . . . , fm are valid inequalities, then so is every polynomial
in cone{f1, . . . , fm}

• The polynomial h is an element of cone{f1, . . . , fm} if and only if

h(x) = s0(x) +

m∑

i=1

si(x)fi(x) +
∑

i6=j
rij(x)fi(x)fj(x) + . . .

where the si and rij are sums-of-squares.
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An Algebraic Approach to Duality

Suppose f1, . . . , fm are polynomials, and consider the feasibility problem

does there exist x ∈ Rn such that

fi(x) ≥ 0 for all i = 1, . . . ,m

Every polynomial in cone{f1, . . . , fm} is non-negative on the feasible set.

So if there is a polynomial q ∈ cone{f1, . . . , fm} which satisfies

q(x) ≤ −ε < 0 for all x ∈ Rn

then the primal problem is infeasible.
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Example

Let’s look at the feasibility version of the previous problem. Given t ∈ R,
does there exist x ∈ R2 such that

x1x2 ≤ t

x2
1 + x2

2 ≤ 1

x1 ≥ 0

x2 ≥ 0

Equivalently, is the set S nonempty, where

S =
{
x ∈ Rn | fi(x) ≥ 0 for all i = 1, . . . ,m

}

where

f1(x) = t− x1x2 f2(x) = 1− x2
1 − x2

2

f3(x) = x1 f4(x) = x2
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Example Continued

Let q(x) = f1(x) + 1
2f2(x). Then clearly q ∈ cone{f1, f2, f3, f4} and

q(x) = t− x1x2 + 1
2(1− x2

1 − x2
2)

= t + 1
2 − 1

2(x1 + x2)2

≤ t + 1
2

So for any t < −1
2, the primal problem is infeasible.

This corresponds to Lagrange multipliers (1, 1
2) for the thm. of alternatives.

Alternatively, this is a proof by contradiction.

• If there exists x such that fi(x) ≥ 0 for i = 1, . . . , 4 then we must
also have q(x) ≥ 0, since q ∈ cone{f1, . . . , f4}

• But we proved that q is negative if t < −1
2
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Example Continued

We can also do better by using other functions in the cone. Try

q(x) = f1(x) + f3(x)f4(x)

= t

giving the stronger result that for any t < 0 the inequalities are infeasible.

Again, this corresponds to Lagrange multipliers (1, 1)

• In both of these examples, we found q in the cone which was globally
negative. We can view q as the Lagrangian function evaluated at a
particular value of λ

• The Lagrange multiplier procedure is searching over a particular subset
of functions in the cone; those which are generated by linear combi-
nations of the original constraints.

• By searching over more functions in the cone we can do better
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Normalization

In the above example, we have

q(x) = t + 1
2 − 1

2(x1 + x2)2

We can also show that −1 ∈ cone{f1, . . . , f4}, which gives a very simple
proof of primal infeasibility.

Because, for t < −1
2, we have

−1 = a0q(x) + a1(x1 + x2)2

and by construction q is in the cone, and (x1 + x2)2 is a sum of squares.

Here a0 and a1 are positive constants

a0 =
−2

2t + 1
a1 =

−1

2t + 1



48 Sum of Squares S. Lall, Stanford 2003.11.12.04

An Algebraic Dual Problem

Suppose f1, . . . , fm are polynomials. The primal feasibility problem is

does there exist x ∈ Rn such that

fi(x) ≥ 0 for all i = 1, . . . ,m

The dual feasibility problem is

Is it true that − 1 ∈ cone{f1, . . . , fm}

If the dual problem is feasible, then the primal problem is infeasible.

In fact, a result called the Positivstellensatz implies that strong duality holds
here.
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Interpretation: Searching the Cone

• Lagrange duality is searching over linear combinations with nonnega-
tive coefficients

λ1f1 + · · · + λmfm

to find a globally negative function as a certificate

• The above algebraic procedure is searching over conic combinations

s0(x) +

m∑

i=1

si(x)fi(x) +
∑

i6=j
rij(x)fi(x)fj(x) + . . .

where the si and rij are sums-of-squares
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Interpretation: Formal Proof

We can also view this as a type of formal proof:

• View f1, . . . , fm are predicates, with fi(x) ≥ 0 meaning that x satis-
fies fi.

• Then cone{f1, . . . , fm} consists of predicates which are logical con-
sequences of f1, . . . , fm.

• If we find −1 in the cone, then we have a proof by contradiction.

Our objective is to automatically search the cone for negative functions;
i.e., proofs of infeasibility.
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Example: Linear Inequalities

Does there exist x ∈ Rn such that

Ax ≥ 0

cTx ≤ −1

Write A in terms of its rows A =



aT1
...

aTm


,

then we have inequality constraints defined by linear polynomials

fi(x) = aTi x for i = 1, . . . ,m

fm+1(x) = −1− cTx
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Example: Linear Inequalities

We’ll search over functions q ∈ cone{f1, . . . , fm+1} of the form

q(x) =

m∑

i=1

λifi(x) + µfm+1(x)

Then the algebraic form of the dual is:

does there exist λi ≥ 0, µ ≥ 0 such that

q(x) = −1 for all x

if the dual is feasible, then the primal problem is infeasible
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Example: Linear Inequalities

The above dual condition is

λTAx + µ(−1− cTx) = −1 for all x

which holds if and only if ATλ = µc and µ = 1.

So we can state the duality result as follows.

Farkas Lemma

If there exists λ ∈ Rm such that

ATλ = c and λ ≥ 0

then there does not exist x ∈ Rn such that

Ax ≥ 0 and cTx ≤ −1



c

x

a1

a2
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Farkas Lemma

Farkas Lemma states that the following are strong alternatives

(i) there exists λ ∈ Rm such that ATλ = c and λ ≥ 0

(ii) there exists x ∈ Rn such that Ax ≥ 0 and cTx < 0

Since this is just Lagrangian duality, there is a geometric interpretation

(i) c is in the convex cone

{ATλ | λ ≥ 0 }

(ii) x defines the hyperplane

{ y ∈ Rn | yTx = 0 }

which separates c from the cone
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Optimization Problems

Let’s return to optimization problems instead of feasibility problems.

minimize f0(x)

subject to fi(x) ≥ 0 for all i = 1, . . . ,m

The corresponding feasibility problem is

t− f0(x) ≥ 0

fi(x) ≥ 0 for all i = 1, . . . ,m

One simple dual is to find polynomials si and rij such that

t− f0(x) +

m∑

i=1

si(x)fi(x) +
∑

i6=j
rij(x)fi(x)fj(x) + . . .

is globally negative, where the si and rij are sums-of-squares
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Optimization Problems

We can combine this with a maximization over t

maximize t

subject to t− f0(x) +

m∑

i=1

si(x)fi(x)+

m∑

i=1

m∑

j=1

rij(x)fi(x)fj(x) ≤ 0 for all x

si, rij are sums-of-squares

• The variables here are (coefficients of) the polynomials si, ri

• We will see later how to approach this kind of problem using semidef-
inite programming
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equality constraints

consider the feasibility problem

does there exist x ∈ Rn such that

fi(x) = 0 for all i = 1, . . . ,m

the function f : Rn→ R is called a valid equality constraint if

f (x) = 0 for all feasible x

given a set of equality constraints, we can generate others as follows

(i) if f1 and f2 are valid equalities, then so is f1 + f2

(ii) for any h ∈ R[x1, . . . , xn], if f is a valid equality, then so is hf

using these will make the dual bound tighter
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ideals and valid equality constraints

a set of polynomials I ⊂ R[x1, . . . , xn] is called an ideal if

(i) f1 + f2 ∈ I for all f1, f2 ∈ I
(ii) fh ∈ I for all f ∈ I and h ∈ R[x1, . . . , xn]

• given f1, . . . , fm, we can generate an ideal of valid equalities by re-
peatedly applying these rules

• this gives the ideal generated by f1, . . . , fm,

ideal{f1, . . . , fm} =

{
m∑

i=1

hifi | hi ∈ R[x1, . . . , xn]

}

written ideal{f1, . . . , fm}, or sometimes 〈f1, . . . , fm〉.
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generators of an ideal

• every polynomial in ideal{f1, . . . , fm} is a valid equality.

• ideal{f1, . . . , fm} is the smallest ideal containing f1, . . . , fm.

• the polynomials f1, . . . , fm are called the generators, or a basis, of
the ideal.

properties of ideals

• if I1 and I2 are ideals, then so is I1 ∩ I2

• an ideal generated by one polynomial is called a principal ideal
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Feasibility of Semialgebraic Sets

Suppose S is a semialgebraic set represented by polynomial inequalities and
equations

S =
{
x ∈ Rn | fi(x) ≥ 0, hj(x) = 0 for all i = 1, . . . ,m, j = 1, . . . , p

}

we’d like to solve the feasibility problem

Is S non-empty?

• Important, non-trivial result: the feasibility problem is decidable.

• But NP-hard (even for a single polynomial, as we have seen)

• We would like to certify infeasibility
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The Real Nullstellensatz

Recall Σ is the cone of polynomials representable as sums of squares.

Suppose h1, . . . , hm ∈ R[x1, . . . , xn].

−1 ∈ Σ + ideal{h1, . . . , hm} ⇐⇒ VR{h1, . . . , hm} = ∅

Equivalently, there is no x ∈ Rn such that

hi(x) = 0 for all i = 1, . . . ,m

if and only if there exists t1, . . . , tm ∈ R[x1, . . . , xn] and s ∈ Σ such that

−1 = s + t1h1 + · · · + tmhm
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Example

Suppose h(x) = x2 + 1. Then clearly VR{h} = ∅

We saw earlier that the complex Nullstellensatz cannot be used to prove
emptyness of VR{h}

But we have
−1 = s + th

with
s(x) = x2 and t(x) = −1

and so the real Nullstellensatz implies VR{h} = ∅.

The polynomial equation −1 = s + th gives a certificate of infeasibility.
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The Positivstellensatz

We now turn to feasibility for basic semialgebraic sets, with primal problem

Does there exist x ∈ Rn such that

fi(x) ≥ 0 for all i = 1, . . . ,m

hj(x) = 0 for all j = 1, . . . , p

Call the feasible set S; recall

• every polynomial in cone{f1, . . . , fm} is nonnegative on S

• every polynomial in ideal{h1, . . . , hp} is zero on S

The Positivstellensatz (Stengle 1974)

S = ∅ ⇐⇒ −1 ∈ cone{f1, . . . , fm} + ideal{h1, . . . , hm}
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Example

Consider the feasibility problem

S =
{

(x, y) ∈ R2 | f (x, y) ≥ 0, h(x, y) = 0
}

where

f (x, y) = x− y2 + 3

h(x, y) = y + x2 + 2

By the P-satz, the primal is infeasible if and only if there exist polynomials
s1, s2 ∈ Σ and t ∈ R[x, y] such that

−1 = s1 + s2f + th

A certificate is given by

s1 = 1
3 + 2

(
y + 3

2

)2
+ 6
(
x− 1

6

)2
, s2 = 2, t = −6.
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Explicit Formulation of the Positivstellensatz

The primal problem is

Does there exist x ∈ Rn such that

fi(x) ≥ 0 for all i = 1, . . . ,m

hj(x) = 0 for all j = 1, . . . , p

The dual problem is

Do there exist ti ∈ R[x1, . . . , xn] and si, rij, . . . ∈ Σ such that

−1 =
∑

i

hiti + s0 +
∑

i

sifi +
∑

i6=j
rijfifj + · · ·

These are strong alternatives
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Testing the Positivstellensatz

Do there exist ti ∈ R[x1, . . . , xn] and si, rij, . . . ∈ Σ such that

−1 =
∑

i

tihi + s0 +
∑

i

sifi +
∑

i6=j
rijfifj + · · ·

• This is a convex feasibility problem in ti, si, rij, . . .

• To solve it, we need to choose a subset of the cone to search; i.e.,
the maximum degree of the above polynomial; then the problem is a
semidefinite program

• This gives a hierarchy of syntactically verifiable certificates

• The validity of a certificate may be easily checked; e.g., linear algebra,
random sampling

• Unless NP=co-NP, the certificates cannot always be polynomially sized.
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Example: Farkas Lemma

The primal problem; does there exist x ∈ Rn such that

Ax + b ≥ 0 Cx + d = 0

Let fi(x) = aTi x + bi, hi(x) = cTi x + di. Then this system is infeasible if
and only if

−1 ∈ cone{f1, . . . , fm} + ideal{h1, . . . , hp}

Searching over linear combinations, the primal is infeasible if there exist
λ ≥ 0 and µ such that

λT (Ax + b) + µT (Cx + d) = −1

Equating coefficients, this is equivalent to

λTA + µTC = 0 λT b + µTd = −1 λ ≥ 0
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Hierarchy of Certificates

• Interesting connections with logic, proof systems, etc.

• Failure to prove infeasibility (may) provide points in the set.

• Tons of applications:
optimization, copositivity, dynamical systems, quantum mechanics...

General Scheme

Primal Feasibility

Lifted Problem P-satz refutation
SDP

Duality

Lifting
Algebraic
Duality

Lifted Problem P-satz refutation
SDP

Duality
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Special Cases

Many known methods can be interpreted as fragments of P-satz refutations.

• LP duality: linear inequalities, constant multipliers.

• S-procedure: quadratic inequalities, constant multipliers

• Standard SDP relaxations for QP.

• The linear representations approach for functions f strictly positive on
the set defined by fi(x) ≥ 0.

f (x) = s0 + s1f1 + · · · + snfn, si ∈ Σ

Converse Results

• Losslessness: when can we restrict a priori the class of certificates?

• Some cases are known; e.g., additional conditions such as linearity, per-
fect graphs, compactness, finite dimensionality, etc, can ensure specific
a priori properties.
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Example: Boolean Minimization

xTQx ≤ γ

x2
i − 1 = 0

A P-satz refutation holds if there is S � 0 and λ ∈ Rn, ε > 0 such that

−ε = xTSx + γ − xTQx +

n∑

i=1

λi(x
2
i − 1)

which holds if and only if there exists a diagonal Λ such that Q � Λ,
γ = trace Λ− ε.

The corresponding optimization problem is

maximize trace Λ

subject to Q � Λ

Λ is diagonal
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Example: S-Procedure

The primal problem; does there exist x ∈ Rn such that

xTF1x ≥ 0

xTF2x ≥ 0

xTx = 1

We have a P-satz refutation if there exists λ1, λ2 ≥ 0, µ ∈ R and S � 0
such that

−1 = xTSx + λ1x
TF1x + λ2x

TF2x + µ(1− xTx)

which holds if and only if there exist λ1, λ2 ≥ 0 such that

λ1F1 + λ2F2 ≤ −I

Subject to an additional mild constraint qualification, this condition is also
necessary for infeasibility.
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Exploiting Structure

What algebraic properties of the polynomial system yield efficient compu-
tation?

• Sparseness: few nonzero coefficients.

• Newton polytopes techniques

• Complexity does not depend on the degree

• Symmetries: invariance under a transformation group

• Frequent in practice. Enabling factor in applications.

• Can reflect underlying physical symmetries, or modelling choices.

• SOS on invariant rings

• Representation theory and invariant-theoretic techniques.

• Ideal structure: Equality constraints.

• SOS on quotient rings

• Compute in the coordinate ring. Quotient bases (Groebner)
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Example: Structured Singular Value

• Structured singular value µ and related problems: provides better up-
per bounds.

• µ is a measure of robustness: how big can a structured perturbation
be, without losing stability.

• A standard semidefinite relaxation: the µ upper bound.

• Morton and Doyle’s counterexample with four scalar blocks.

• Exact value: approx. 0.8723

• Standard µ upper bound: 1

• New bound: 0.895
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Example: Matrix Copositivity

A matrix M ∈ Rn×n is copositive if

xTMx ≥ 0 ∀x ∈ Rn, xi ≥ 0.

• The set of copositive matrices is a convex closed cone, but...

• Checking copositivity is coNP-complete

• Very important in QP. Characterization of local solutions.

• The P-satz gives a family of computable SDP conditions, via:

(xTx)d(xTMx) = s0 +
∑

i

sixi +
∑

jk

sjkxjxk + · · ·
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Example: Geometric Inequalities

Ono’s inequality: For an acute triangle,

(4K)6 ≥ 27 · (a2 + b2 − c2)2 · (b2 + c2 − a2)2 · (c2 + a2 − b2)2

where K and a, b, c are the area and lengths of the edges.

The inequality is true if:

t1 := a2 + b2 − c2 ≥ 0

t2 := b2 + c2 − a2 ≥ 0

t3 := c2 + a2 − b2 ≥ 0




⇒ (4K)6 ≥ 27 · t21 · t22 · t23

A simple proof: define

s(x, y, z) = (x4 +x2y2− 2y4− 2x2z2 +y2z2 + z4)2 + 15 · (x− z)2(x+ z)2(z2 +x2−y2)2.

We have then

(4K)6 − 27 · t21 · t22 · t23 = s(a, b, c) · t1 · t2 + s(c, a, b) · t1 · t3 + s(b, c, a) · t2 · t3

therefore proving the inequality.


