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The EE392o project is meant to be substantial, involving some combination of indepen-
dent research, implementation and testing, simulation and verification, and documentation.
You can propose anything you like as a project; the descriptions below are meant only as
broad categories and generic examples. We might compile a list of possible projects a bit
later. We’re also happy to make some suggestions for projects.

1 Formal project requirements

• Initial proposal. Due end of second week. This should include the topic, team members,
and some ideas about the approach. Include some background, basic problem, and
references. Suggested length: 1–3 pages.

• Midterm progress report. Due end of fifth week. At this point you should have a good
idea of your approach, and some preliminary results. Suggested length: 5–10 pages.

• Final report. Due end of 9th week. Please try to keep the body of the report under 15
pages.

• Final presentation. (Possibly) given 9th or 10th week. Probably 15 minutes, plus 5 for
questions.

All formats must be universally readable, such as pdf or simple html. No proprietary
formats (word, powerpoint) will be accepted. We’ll make some latex templates available for
you. If you end up typesetting more than a small amount of mathematics, there is really no
other choice.
Your report and other supportong materials should be assembled into a simple self-

contained web site, with a master index.html file with links to the other documents, codes,
and other materials. Our goal is to post these on the web.

2 Types of projects

2.1 A new modeling approach

The most common project will involve an innovation in modeling (in the sense used in
optimization), i.e., the way a practical problem is formulated as an optimization problem. In
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such a project, you develop a new approach to some engineering (or other practical) problem,
possibly in simplified form. Such a project will likely have the following components:

• Background and problem in general terms. You must clearly describe the engineering
problem, giving the background, describing how the problem is solved now, and what’s
lacking, or inadequate, in how it’s done now. For example, current design practice
might be ad hoc, ignore a number of constraints, etc.

This description can be vague, as in “The goal is to estimate the original uncorrupted
signal, without excessive sensitivity to noise.” Don’t mix in anything here that is
related to how you’re going to solve the problem.

• Your new formulation. Explain your formulation of the problem (or some part of it,
or some simplified variation) as a convex optimization problem (or game, or convex
optimization based heuristic), etc.. Be clear about what the variables and constraints
are, and whether the problem is convex, or nonconvex. Is your modeling (formulation)
accurate? What constraints and specifications can your formulation handle? Which
can you not handle? For which is your method heuristic or approximate?

If the problem you formulate is nonconvex, how will you solve it, or approximately
solve it, using convex optimization? If you’re not solving the problem exactly, you will
need to justify that the method works. This might involve simulation of examples to
show the method works well, even if it’s not known to be optimal.

• Verification. You may need to demonstrate that despite the approximations and sim-
plifications you made in formulating your problem, or in solving your problem (if it
is not convex), the end result is still useful (and hopefully good). If you have a new
method for design of some circuit, for example, you might provide some SPICE sim-
ulations of the designs produced by your method. If your method involves a heuristic
for solving a hard (say, combinatorial) problem, then you can consider some cases that
are small enough for you to compute the global optimum, which can then be compared
to the approximate solutions produced by your method.

It might be appropriate to compare the results your method to existing ones (and
hopefully, show a dramatic improvement).

To solve the problem you formulate you can use standard codes (if your problem can be
reduced to a standard problem), or develop your own. If the problem you formulate has
structure that can be exploited, and problems with more than 1000 or so variables are of
interest, you can develop an efficient implementation that scales your method at least to
medium scale problems (many thousands of variables). If appropriate and interesting, you
can develop a distributed algorithm for solving your problem.
We emphasize that your formulation does not have to be a convex optimization prob-

lem. If it is nonconvex, however, you must use some convex optimization based methods
for solving it, perhaps approximately or heuristically. You could form a relaxation, use a
randomized method, use branch and bound (with convex optimization based lower bounds),
or repeated linearization/convexification to (approximately) solve your problem. However,

2



it is unacceptable to simply form a nonconvex problem and then approximately solve it using
some standard nonlinear programming method or code.
Generic titles for projects of this style are “Optimal XXX via convex optimization”, or

“Optimal design of XXX via convex optimization”. Some more specific examples:

• Color correction via convex optimization

• Coordinated vehicle trajectory design via convex relaxations

• Transmit filter design via convex optimization

• DRAM cell design via geometric progamming

• Optimal power assignment in wideband FDMA system with

• Optimal doping profiles via geometric programming nonlinearities

The principal final artifact for a project of this type is a research paper, along with all
supporting material such as (well documented) codes, scripts, and data.

2.2 Pedagogical project

In a pedagogical project, the goal is not (directly) to do original research. Instead the focus
is on creating materials that are meant to explain, illustrate, or illucidate some aspect of
convex optimization, or some application of convex optimization.
For example, you might work out or collect from the literature the details of some ap-

plication (say, digital filter design), develop simple codes to carry out the designs, and then
work out a number of interesting examples. You might develop a simple java application for
interactive digital filter design.
As another (more generic) example, you might develop implementations of some algo-

rithms for convex optimization, that are optimized for clarity and simplicity (not perfor-
mance), that students in future years can use.
Some sample titles:

• “Digital filter design”

• “Trajectiory optimization”

• “Antenna array weight design”

• “Experiment design”

• “Extremal volume ellipsoids”

• “Hyperplane classification”

Final artifacts for such a project: A well written lecture, a set of lecture notes, a set
of routines that carry out the designs (perhaps a small software toolbox); many examples
worked out with nice trade-off plots. Good writing and clear documentation is very important
in such a project.
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2.3 Computational/software project

You will implement one or more algorithms. You must decide what to implement, and in
addition to developing the code, you must develop documentation, test suites, etc. The goal
is to make the software available publicly. The software can be in Matlab/octave, C/C++,
Java, or any other reasonable language. It should be as simple as possible, totally portable.
You should avoid, if possible, using anything but public domain or easily used code.
Final artifact: A directory, to be made publicly available, that contains the source code

(makefiles, etc.), and possibly executables for several architectures, very clear documentation,
and a number of examples and test routines.
Samples:

• “C/LAPACK implementation of Newton and barrier methods for dense problems”

• “Software for total variation reconstruction and smoothing”

2.4 Theory

Of course, this is not the main focus of the course. But we are open to a well-conceived
project focussing on some theory related to the course material, e.g., self-concordance and
complexity analysis, relaxations, randomized algorithms.
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