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1 Introduction

Many of the iterative algorithms employed to solve optimization problems require the solution of a
structured linear system at each iteration. For example, a single step of Newton’s method, applied
to a twice-differentiable convex function f : Rn → R, requires the solution of the n× n symmetric
positive definite linear system

H∆x = −g, H , ∇2f(x), g , ∇f(x)

at the current iterate x ∈ Rn. In practice, we find that the bulk of computational resources (memory,
time) consumed by these algorithms is spent constructing and solving these linear systems, and not
in the higher-level algorithmic details. That is not to say that the higher-level details do not impact
performance; for example, algorithmic improvements could result in a reduction in the number of
iterations, yielding a proportional reduction in computation time. But the fact remains that the
overall performance of many optimization algorithms depends heavily on the performance of the
underlying matrix computations.
How do we know this? While theoretical complexity analysis can be used to provide some

indication, such determinations are generally made through profiling. Profiling is the practice of
running a program in a slightly modified manner so that its execution can be carefully monitored;
for example, how often each subroutine is called, and how much time is spent in each one. In
general, profiling reveals that the performance of a program is dominated by a handful of key
subroutines. In the case of numerical optimization software, these critical subroutines are almost
always those devoted to numerical linear algebra.
Therefore, anyone who wishes to become proficient in the construction of efficient optimization

software must develop competence in the area of numerical linear algebra software as well. The
most important step towards this competence is accepting this one principle:

Do not write your own.

In other words, you should not write C, C++, or Java code to perform seemingly simple tasks
such as taking the inner product of two vectors, multipling two matrices together, or performing a
Cholesky factorization—no matter how straightforward it might seem to do so. Instead, you should
use one of the many existing, mature, publically available software libraries to perform these tasks.
The reasons for this are severalfold:

• You can focus on other important issues, such as the algorithm and the user interface;

• The amount of code you will need to write will be greatly reduced...
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• ...thereby greatly reducing the number of bugs that you will introduce;

• You will be insulated from subtle and difficult numerical accuracy issues; and

• Your code will run faster—sometimes dramatically so.

In this lecture, we will introduce you to to several software libraries for numerical linear algebra,
and to some of the jargon and conventions that pervade the field. Nearly all of thse libraries can
be found at one Web site, called Netlib [DGB+03].1 Netlib is a clearinghouse for some of the most
(deservedly) popular numerical software available, particularly for linear algebra, and is maintained
by people at the University of Tennessee and the Oak Ridge National Laboratory and colleagues
around the world. Of particular interest is a web page created by one of Netlib’s maintainers
[Don03], which provides quite a long list of freely available linear algebra software.
Admittedly, for many people in this class it will be appropriate and reasonable to use nothing

but MATLAB in their projects—in which case this lecture may not prove directly relevant. Never-
theless, what we present here will help you understand exactly what MATLAB is doing under the
hood. Indeed, MATLAB uses several of the very libraries we are going to discuss here. And in your
future work in business or academia, you may find some very practical reasons to move away from
any dependence on MATLAB (cost, licensing restrictions, etc.), in which case you will be glad to
have become familiar with these resources now.
Let us briefly address what some of you might otherwise consider a conspicuous omission from

this document: the book Numerical Recipes in C [PFTV93], or related books for Fortran, C++,
and Pascal. These books contain implementations of a number of useful algorithms for numerical
linear algebra, and the code for these algorithms can be downloaded rather readily from the Web.
Without going into detail, it is my opinion that these books have more pedagogical value than
practical value. In other words, if you wish to learn how a particular algorithm works, these books
can be quite helpful; but if you wish to use an algorithm, I would recommend that you refer instead
to the resources described here.
It is important to be aware of any usage restrictions placed on the software you use, particularly

when incoporating someone else’s code into your own programs. Fortunately, there are plenty
of numerical linear algebra software packages that may be freely used in any application, both
educational and commercial. All of the packages listed in this document fit this criteria. Some are
fully in the public domain, while others have modest attribution or documentation requirements—
not unlike citing references when publishing a paper. If you use any of them, be sure to consult
their documentation for specific licensing requirements.
The notes that follow assumes that the reader is familiar with the material in Appendix C of

the Convex Optimization textbook [BV].

2 The Basic Linear Algebra Subroutines (BLAS)

The Basic Linear Algebra Subroutines, or BLAS, are a suite of “kernel” routines that implement
a variety of fundamental “forward” linear algebra operations such as dot products, matrix-vector
multiplcations, and matrix-matrix multiplications. The authors of the BLAS recognized how com-
mon these operations are in computational software, and the significant benefits that would result
by creating a standardized library to implement them.
For full documentation on the BLAS library, consult the BLAS web site [BLA03].

1The URL’s of the Web sites discussed here are found in the bibliography citations at the end of this document.
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2.1 The levels of BLAS

The BLAS library as we know it today was specified and developed in three stages, or levels: Level
1 in 1973-1977 [LHKK79], Level 2 in 1984-1986 [DCHH88], and Level 3 in 1987-1990 [DCDH90].
Each of these levels roughly corresponds to a particular level of theoretical complexity:

• Level 1 : O(n) vector operations, such as addition, scaling, dot products, norms:

y ← αx+ y, r ← xT y, r ← ‖x‖2, r ← ‖x‖1

• Level 2 : O(n2) matrix-vector operations, such as matrix-vector multiplications,

y ← αAx+ βy, y ← αATx+ βy, y ← αAx+ βBx

triangular matrix-vector multiplications and matrix solves,

x← αTx, x← αT Tx, x← αT−1x, x← αT−Tx

and rank-1 and symmetric rank-2 updates:

A← αxyT + βA, A← αxxT + βA, A← αxyT + αyxT + βA

• Level 3 : O(n3) matrix-matrix operations, such as matrix-matrix multiplication,

C ← αAB + βC, C ← αABT + βC, C ← αATB + βC, C ← αATBT + βC

triangular matrix-matrix multiplications and matrix solves,

B ← αTB, B ← αBT, B ← αT TB, B ← αBT T

B ← αT−1B, B ← αBT−1, B ← αT−TB, B ← αBT−T

and symmetric rank-k and rank-2k updates:

C ← αAAT + βC, C ← αATA+ βC, C ← αAJAT + βC, C ← αATJA+ βC

C ← αABT + αBAT + βC, C ← αATB + αBTA+ βC

C ← αAJBT + αBJAT + βC, C ← αATJB + αBTJA+ βC

2.2 The BLAS naming convention

The BLAS was originally written in Fortran 66 and Fortran 77; and while a complete C “wrap-
per” interface has been constructed for it, vestiges of this Fortran history do remain.2 The most
prominent example is the consistent, compact naming convention that BLAS routines follow.
For the Level 1 BLAS, the naming convention is as follows:

cblas_ X XXXX

prefix (C only) data type operation

2Unfortunately, not every Fortran library worth using has a C wrapper. So it is worthwile to learn how to call
Fortran subroutines directly from C/C++ code; see §6 for more details. You may even decide to skip the C interfaces
altogether once you become proficient at using Fortran libraries.
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The cblas_ prefix applies only to the C interface; a prefix is not used in the original Fortran
version. Following this prefix is a single-letter code indicating the data type of the operation:

s single precision real c single precision complex
d double precision real z double precision complex

For our purposes, only d and occasionally z will be relevant. For vector functions, the data type is
followed by a 3-5 letter operation code; e.g.,

axpy scale and accumulate: y ← αx+ y
dot dot (inner) product: r ← xT y

nrm2 2-norm: r ← ‖x‖2 = (
∑n

i=1 x
2
i )

1/2

So, for example, the function cblas_ddot returns the inner product of two double-precision vectors.
For matrix operations in the Level 2/3 BLAS, the naming convention is a bit more complex:

cblas_ X XX XXX

prefix (C only) data type structure operation

The prefix and data type are identical to the Level 1 case. Following the data type is a two-letter
code indicating the structure, if any, of the matrix involved:

tr triangular tp packed triangular tb banded triangular
sy symmetric sp packed symmetric sb banded symmetric
hy Hermitian hp packed Hermitian hn banded Hermitian
ge general gb banded general

The “packed” and “banded” matrix types utilize a special, more efficient data format; for exam-
ple, the symmetric packed sp format reduces the storage requirements from n2 to n(n + 1)/2 by
eliminating the duplicated elements. Following this indicator is 1-3 letter operation code; e.g.,

mv matrix-vector multiplication: y ← αAx+ y
mm matrix-matrix multiplication: C ← αAB + βC
r rank-one update: A← αxyT +A

So, for example, the function cblas_dsymv multiplies a vector by a symmetric matrix, each stored
in double precision format.
Once you gain some familiarity with these naming conventions, it quickly becomes very easy to

remember. In fact, many of us who have spent perhaps too much time working with BLAS often
use words like ddot or daxpy in conversation.

2.3 Using BLAS effectively

In order to use the BLAS most effectively, it is important to arrange your calculations in a way that
maximizes the use of the higher-level BLAS operations, particularly the Level 3 operations. This
is because the Level 3 operations exert finer control over the memory accesses than an equivalent
set of Level 2 operations; and it is these memory access that generally dictate the performance of
the algorithm. So, for example, consider the task of performing k rank-1 updates on a matrix:

A← A+
k
∑

i=1

xiy
T
i , A =

[

a1 . . . an

]

∈ Rm×n, xi ∈ Rm, yi ∈ Rn

This operation can be performed using operations in any of the 3 BLAS levels:
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• kn calls to the Level 1 routine cblas_daxpy: k for each column of A:

aj ← aj + yjixi, i = 1, . . . , k, j = 1, . . . , n

• k calls to cblas_dgerk, a Level 2 routine that performs rank-1 updates:

A← A+ xiy
T
i , i = 1, . . . , k

• a single call to cblas_dgemm, a Level 3 routine that performs various matrix multiplications:

A← A+XY T , X ,
[

x1 . . . xk

]

, Y ,
[

y1 . . . yk

]

This last choice will certainly give the best performance, because the potential for speed optimiza-
tion is greater with Level 3 routines than with Level 2 routines, and in turn greater with Level 2
routines than Level 1.
On the other hand, it also has the strictest data storage requirements: the vectors xi and yi

must be stored as the columns of respective matrices. Indeed, Level 3 routines do in general tend
to impose stricter requirements on the organization of the input data. This does not mean that
you should insert a lot of new data shuffling code into a routine simply to make it possible to call
higher-level BLAS routines. Instead, you should plan your code design in such a manner that the
data is already arranged in this format.
This provides only an overview of the functionality in the BLAS; for more information, con-

sult the many resources at the BLAS home page [BLA03], including the BLAS Technical Forum
document [Bla01].

2.4 Optimized BLAS and ATLAS

Many of the operations implemented in the BLAS seem rather simple, begging the question: why
is it worth downloading, learning, and using the BLAS when implementing the same routines by
hand is so simple? For example, consider the accumulated matrix multiplication utilized in the
above example:

A← A+XY T , X ∈ Rm×p, Y ∈ Rn×p

The individual elements of A are updated as follows,

Aij ← Aij +

p
∑

k=1

XikYjk, 1 ≤ i ≤ m, 1 ≤ j ≤ n

suggesting the following simple implementation:

void matmultadd( unsigned m, unsigned n, unsigned p,

const double* X, const double* Y, double *A ) {

unsigned i, j, k;

for ( i = 0 ; i < m ; ++i )

for ( j = 0 ; j < n ; ++j )

for ( k = 0 ; k < p ; ++k )

A[ i + j * n ] += X[ i + k * p ] * Y[ j + k * p ];

}
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What advantage does a call to the BLAS routine cblas_dgemm offer over this simple implementation—
particularly when one considers the costs of using BLAS, such as the time needed to find, download,
compile, and learn to use it? The answer to this question is performance: in this case, for example,
the BLAS routine will likely be several times faster than this simple implementation!
Of course, there are a few simple things that one can do to the above function to improve its

performance; for example, the array-indexing arithmetic can be greatly simplified. But incremental
changes such as these will not be sufficient to provide the best performance. Thanks to memory
bandwidth, cache architecture, and pipelining issues, it is not trivial to write linear algebra code that
achieves high performance on modern computers. Indeed, it is rarely possible to write numerical
linear algebra code that is simultaneously is easy to read and achieves high performance.
Fortunately, the acceptance of BLAS as a standard interface for numerical linear algebra has

made practical a number of efforts to produce highly-optimized BLAS libraries. Many high-end
workstation and processor vendors actually supply or sell BLAS for their systems (e.g., [Int03]).
A highly recommended, free alternative is ATLAS [WPD03, WPD00], which uses automated code
generation and testing methods to generate an optimized BLAS for a given computer. The system
is quite effective, actually: it achieves performance comparable to (and sometimes, better than)
vendor-supplied BLAS libraries; it is very portable; and it has a permissive BSD-like license.
The primary technique that these optimized BLAS libraries employ to improve performance,

particularly for Level 3 routines, is blocking. Blocking uses block matrix arithmetic to decompose a
larger matrix calculation into a sequence of calculations on smaller submatrices. For example, when
performing the calculation A← A+XY T for large A, X, and Y , the subroutine cblas_dgemm may
first break the matrices into blocks; e.g.,

[

A11 A12

A21 A22

]

←

[

A11 A12

A21 A22

]

+

[

X11

X21

]

[

Y T
11 Y T

21

]

=

[

A11 +X11Y
T
11 A12 +X11Y

T
21

A21 +X21Y
T
11 A22 +X21Y

T
21

]

and then apply a standard, “unblocked” algorithm on these smaller blocks; e.g.,

A11 ← A11 +X11Y
T
11, A12 ← A12 +X11Y

T
21, A21 ← A21 +X21Y

T
11, A22 ← A22 +X21Y

T
21.

Proper blocking makes efficient the use of the cache, so that the processor can spend most of
its time performing calculations and relatively little waiting for data to arrive from the slower
main memory. Block sizes are chosen to be just small enough so that each individual step of the
calcuation fits within the cache; and the ordering of the calculations is carefully chosen to minimize
redundant reading and writing of data to and from main memory. The best choices depend on the
specific operation being performed, the sizes of the inputs, and specific architectural properties of
the computer. In fact, the ATLAS library basically performs a series of tests over a wide range of
block sizes and orderings to find the optimal combination.
What is the difference in performance? Admittedly, for Level 1 BLAS, speedups through careful

hand-optimization are not particularly significant: say, 15 percent or so. But the improvement
increases dramatically as you move to Level 2, and then to Level 3. For Level 3 BLAS, the difference
can be amazing, with speedups speedups of 10 times or more on many platforms, compared to a
basic, “clean” implementation of the BLAS [WPD00]. Furthermore, the optimized routines come
much closer to the known peak calculation rates supported by the underlying processor—in other
words, they come close to known upper bounds on performance.
Therefore, due to the wide availability of high-performance BLAS libraries, both free and non-

free—and due to the significant gains in performance that can be achieved by effectively using
them—there is simply no reason not to use BLAS when writing code in C, C++, Fortran, etc.
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2.5 The Matrix Template Library

Having just sung the praises of the BLAS, allow me to nonetheless suggest an alternative: The
Matrix Template Library, or MTL [LSL01]. MTL is a numerical algebra library written specifically
for C++, taking advantage of the most advanced features of the C++ language to achieve both
flexibility and performance. It supports the same types of matrix structure as BLAS, but adds
support for sparse matrices. We have no experience with this software; but if you are already quite
familiar with the C++ language, you may want to consider this library as an alternative to BLAS.

3 LAPACK

The Linear Algebra PACKage, or LAPACK [LAP00, ABB+99], implements a variety of more ad-
vanced linear algebra computations designed to solve a variety of types of linear systems and
perform a number of common matrix decompositions and factorizations. LAPACK was first re-
leased in February 1992, and the latest version was released in May 2000. It replaces predecessors
EISPACK and LINPACK, providing more functionality, better accuracy, and better performance.
LAPACK is built using the BLAS routines, which means that its performance depends heavily
on the performance of the BLAS library being used. It uses a similar naming convention for its
routines, and supports the same data types. Many of these routines support the many of the same
types of structured matrices in the BLAS—including symmetric, triangular, and banded matrices.
For more complete documentation on the usage of LAPACK, consult the LAPACK web site

[LAP00]. The full user guide [ABB+99] is available on-line at that site, although for a frequent
user it is well worth purchasing a paper copy of the text. The Matrix Template Library [LSL01]
provides an interface to LAPACK as well.

3.1 LAPACK routine categories

The routines in the LAPACK library are divided into three categories: auxiliary, computational,
and driver routines. Auxiliary routines perform a number of miscellaneous low-level tasks, and are
primarily intended to support the other routines. Computational routines are designed to perform
single, specific computational tasks:

• factorizations: LU , LLT /LLH , LDLT /LDLH , QR, LQ, QRZ, generalized QR and RQ;

• eigenvalue decompositions for symmetric and nonsymmetric matrices;

• singular value decompositions; and

• generalized eigenvalue and singular value decompositions.

Finally, driver routines combine computational routines in sequence in order to solve a variety of
standard linear algebra problems from start to finish, including:

• Linear equations: AX = B;

• Linear least squares problems:

minimizex ‖b−Ax‖2 minimize ‖y‖
subject to d = By
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• Generalized linear least squares problems:

minimizex ‖c−Ax‖2 minimize ‖y‖
subject to Bx = d subject to d = Ax+By

• Standard and generalized eignenvalue and singular value problems:

AZ = ΛZ, A = UΣV T , Z = ΛBZ

Driver routines are certainly the best choice when they fit an application. However, accessing
the computational routines individually provides additional flexibility, particularly when solving
non-standard problems or when access to intermediate results is required.

3.2 A usage example

To see how LAPACK can be applied in a variety of ways, let us the task of solving

[

P AT

A 0

] [

dx

dv

]

=

[

ra

rb

]

where the positive definite matrix P = P T ∈ Rn×n, the nonsingular matrix A ∈ Rn×m (m < n),
and the vectors ra ∈ Rn, rb ∈ Rm are all supplied separately. Linear systems with this type of
structure occur quite often in KKT-based optimization algorithms.
First, we note that the m + n × m + n coefficient matrix of this linear system is symmetric

indefinite and nonsingular. Therefore, it admits a permuted LDLT factorization,

[

P AT

A 0

]

→ QLDLTQT ,

where Q is a permutation matrix, L is lower triangular, and D is block-diagonal with 1 × 1 and
2× 2 blocks. Given this factorization, the result can be computed as

[

dx

dv

]

= QL−TD−1L−TQT

[

ra

rb

]

.

The LAPACK driver routine dsysv solves symmetric indefinite linear systems, by calling the compu-
tational routine dsytrf for computing the above factorization. So after constructing the coefficient
matrix from P and A and the right-hand vector from ra and rb, the system can be solved with a
single call to dsysv.
Let us consider an alternate, two-stage approach to this problem, suggested by the fact that

dv = (AP
−1AT )−1(AP−1ra − rb), dx = P−1ra − P−1ATdv.

First, let us solve the system
P
[

Ã r̃a

]

=
[

A ra

]

for the quantities Ã and r̃a. Because P is symmetric positive definite, we can use the routine
dspsv to solve this problem, which will in turn call the computational routine dsptrf to compute a
Cholesky factorization of P . Like most of LAPACK’s driver routines, dspsv can efficiently handle
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multiple right-hand sides simultaneously, eliminating the need to factorize P more than once. Once
these quantities are found, we then solve a second linear system

(ÃAT )dv = Ar̃a − rb

for dv. The matrix ÃA
T can be computed using a relevant call to BLAS, either dgemm or dsyr2k;

and once it has been computed, a second call to dspsv can be used to solve this second linear
system. Finally, the quantity dx is obtained by computing dx = r̃a − Ãdv with a single daxpy call.
There is a third way to solve this linear system using standard LAPACK calls, by first trans-

forming the problem into a standard size n×n least squares problem. We leave the transformation
itself as an exercise to the reader, except to say that it will require a single call to the computational
routine dsptrf. The resulting least squares problem can be solved using a call to the driver routine
dgels, which in turn calls the computational routine dgeqrf to perform a QR factorization on the
coefficient matrix.
It may seem curious why we would even consider something other than an LDLT factorization,

when it seems so straightforward. In fact, there are a number of reasons. The P matrix may exhibit
a significant amount of structure; say, for example, it is block-diagonal. Or perhaps the Cholesky
factorization or inverse of P is readily available. In these cases, the Cholesky-based method is
likely to be preferred, because it will be easier to exploit this additional information about P .
Furthermore, a Cholesky-bsaed approach will often be preferred when A and P are sparse, for
certain technical reasons we will discuss later.

4 Sparse matrices

We say that a matrix A ∈ Rm×n is sparse if it satisfies two conditions:

• the number of non-zero elements nnz is small; i.e., nnz ¿ mn. For the purposes of this
definition, any element which is not known to be zero is counted as non-zero.

• the matrix has a known sparsity pattern: that is, the location of each of the aforementioned
non-zero elements is explicitly known. A sparsity pattern can be represented visually using a
spy diagram; see Figure 1 for an example.

Sparsity can be exploited to increase the performance of many matrix computations; e.g.:

• Storing a matrix A ∈ Rm×n using double precision numbers requires 8mn bytes if A is dense,
or 16nnz bytes (or less, depending on the exact storage format) if A is sparse.

• The operation y ← y +Ax requires mn multiplications and additions if A is dense, but only
nnz multiplications and additions if A is sparse.

• The operation x ← T−1x, where T ∈ Rn×n is triangular and nonsingular, requires n di-
vides and n(n − 1)/2 multiplications and additions if A is dense; and n divides and nnz − n
multiplications and additions if A is sparse.

There are a variety of methods for efficiently representing a sparse matrix on a computer. A
simple (although somewhat inefficient) method is to store the data in a 3 × nnz matrix: the first
row representing the row indices, the second row representing the column indices, and the third
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Figure 1: Spy diagram of a matrix. The dots represent non-zero entries.

row representing the values themselves. The columns are typically sorted in some fashion; and for
symmetric matrices, redundant elements are eliminated. For example,









2.5 1.2 0 0
1.2 3.0 0 0.8
0 0 4.0 0
0 0.8 0 2.5









=⇒





1 2 2 3 4 4
1 1 2 3 2 4
2.5 1.2 3.0 4.0 0.8 2.5





The best storage format is usually dictated by the particular application, or by the software library
that one decides to use. See [Saa94] for a description of thirteen common choices.
Sparse matrix storage formats and algorithms consume a bit of extra overhead that dense matrix

algorithms do not share. So in practice, sparse methods are actually be slower and consume more
memory unless the matrices involved are “sufficiently” sparse. Unfortunately, the exact break-
even point depends upon the sizes and sparsity patterns of the matrices involved, as well as the
specific calculations to be performed. However, a common general rule is that sparse methods are
employed for a matrix when the average number of elements per row or column is a small constant,
independent of the size of the matrix. Expressed more technically, the means that nnz = O(m+n)
for A ∈ Rm×n above.

4.1 Sparse BLAS

Is there a sparse version of the BLAS? Well, yes and no. Because of the variety of storage formats—
and the fact that no one format is superior for all applications—there is not a mature, de facto
standard library for sparse operations that mimics the dense BLAS. However, there are a number
of close attempts, such as:

• Sparse BLAS : The BLAS Technical Forum [Bla01] has defined a standard interface for sparse
matrix operations, using an abstraction approach that shields the user from the specific
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internal data storage format employed for the matrices. However, a reference implementation
has not yet been completed, and as such mature, optimized versions are not available.

• NIST Sparse BLAS [RP97]: This is an alternate implementation of a sparse BLAS that was
submitted to the BLAS Technical Forum. Unlike the BLAST standard, an implementation
of this system is available at the cited Web site.

• The Matrix Template Library [LSL01]: The C++ library mentioned above also provides support
for sparse matrices.

4.2 Sparse factorizations

There are quite a few libraries for factorizing sparse matrices and solving sparse linear systems that
are mature and readily available. These include SPOOLES [AGL+99], SuperLU [DGL03], TAUCS
[TCR03], and UMFPACK [Dav03]. As with LAPACK, the routines are tailored to exploit different
types of matrix structure:

• A = PLLTP T (Cholesky) factorizations for symmetric positive definite (SPD) systems;

• A = PLDLTP T factorizations for symmetric indefinite systems; and

• A = P1LUP
T
2 factorizations for general unsymmetric matrices.

In the above factorizations, L represents a lower triangular matrix; U an upper triangular matrix;
D a block diagonal matrix with 1 × 1 or 2 × 2 blocks; and P , P1, and P2 permutation matrices.
See §C.3 in [BV] for more information about these factorizations.
Permutation matrices effectively rearrange the rows and/or columns of the matrix before the

true numerical factorization is performed. For this reason, permutations are often called orderings
and are typically stored simply as vectors of indices describing the rearrangement. LAPACK
optionally computes orderings to improve the accuracy of its calculations. But for sparse matrices,
orderings are critically important, because they can significantly impact the sparsity of the resulting
factorizations, and therefore sthe performance of any solver that uses them. For a somewhat extreme
example, consider the 50 × 50, symmetric positive definite “arrow” matrix whose spy diagram is
depicted in Figure 2(a). If no permutation is performed, than the Cholesky factorization of this
matrix is fully dense (Figure 2(b)). On the other hand, by choosing a permutation matrix P that
reverses the rows and columns of the matrix, the Cholesky factor is indeed sparse (Figure 2(c)).
Clearly, choosing an effective ordering is very important when working with sparse matrices.

Unfortunately, the general problem of choosing a permuation which results in the sparsest possi-
ble factorization is a combinatorial graph-manipulation problem. However, a number of effective
heuristics have been developed which produce particularly good results in practice. Furthermore,
permutations can in theory have undesirable effects on numerical accuracy; fortunately, in practice
this is usually not a problem.
Note that the spy diagrams of the Cholesky factors L in Figure 2(b)-(c) are valid no matter

what the exact numerical values of the original matrix were—that is, assuming that the matrix is
positive definite. In fact, they depend only on the sparsity pattern of the original matrix A, and on
the rearrangement induced by the permutation matrix P . This is also true for LU factorizations:
as long as the original matrix A is nonsingular, then the sparsity patterns of L and U depend only
on the specific choices of P1 and P2 and the sparsity pattern of A.
This property is often exploited in practice by dividing the factorization into two steps: a sym-

bolic step and the numerical step. The symbolic step computes an appropriate set of perumutations
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Figure 2: Sparse factorization of an “arrow” matrix: (a) original matrix; (b) Cholesky factor with
P = I (no permutation); (c) Cholesky factor with P chosen to reverse the rows and columns.

that (heuristically) maximize sparsity, and using these computes the sparsity pattern of the result-
ing factors L, U . The second step completes the process by computing the values of the non-zero
elements. This two-stage approach provides significant savings when solving multiple linear systems
with the same sparsity pattern—because the symbolic factorization can be computed only once,
and shared among all of the linear systems. This precise scenario occurs quite often in iterative
methods for optimization.

5 Final comments

We have only introduced a fraction of the software that is available for numerical linear algebra.
There are a number of other areas that have received considerable attention in the field of numerical
linear algebra that simply would not fit the time constraints of this lecture:

• Iterative methods for sparse and structured linear systems

• Parallel and distributed methods (MPI)

• Fast linear operators: fast Fourier transforms (FFTs), convolutions, state-space linear system
simulations, etc.

• Low-level details of various factorization and solution methods

In all of these cases, however, there is considerable existing research, and accompanying public
domain (or freely licensed) code, which likely can be applied to any problem you will encounter.
While certainly your application, and even some of the key computations, may be unique, the bulk
of the computational work will likely resemble calculations performed in many other fields. Hence,
it makes sense to benefit from the prior efforts of others.

6 Appendix: The Fortran legacy

One of the potential pitfalls of using existing numerical algebra libraries is that many of are imple-
mented in Fortran (specifically, Fortran 77). Using Fortran libraries with C, C++, and other more
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modern language poses certain interoperability issues.
In many cases, these libraries now include C or C++ “wrapper” code that shields you from

many of these issues. Certainly, when such wrappers exist, you should use them. Unfortunately,
not all libraries provide them. In this section, we highlight some of the issues you will encounter if
you attempt to call a Fortran routine directly. The reader is encouraged to utilize Web resources
for further information on calling Fortran routines from C and C++; a simple search for “Calling
Fortran from C” on Google will yield a wealth of information.

6.1 Data types

When declaring variables in C that you intend to pass to Fortran functions, it is imperative that
you use data types that correspond to Fortran data types. Failing to use the

Fortran C Fortran C
INTEGER int CHARACTER char

LOGICAL int CHARACTER*(*) char*

REAL*8 double REAL*4 float

DOUBLE PRECISION double REAL float

DOUBLE COMPLEX (see §6.4) COMPLEX (see §6.4)

The above table is very likely correct, but is necessarily not definitive, particularly with regards to
INTEGER data.

6.2 Subroutine names and argument passing

Fortran compilers often modify the names of the subroutines and functions as they compile, for
certain implementation-dependent reasons. (C++ compilers do this as well, although for different
reasons.) This practice is completely transparent to a user writing code exclusively in Fortran; but
in order to call a Fortran subroutine from C, you must call it by its modified name. In most cases,
this involves converting the Fortran name to all lowercase, and adding an underscore.
In addition, in order to call a Fortran subroutine from C, you must actually pass pointers to

all of the scalar (that is, non-array) arguments. For those familiar with the science of computer
languages, the reason for this is that Fortran passes scalar arguments by reference, while C passes
them by value. C arrays are passed by reference, so they are exempt from this rule.
So, for example, consider a Fortran function defined as follows:

DOUBLE PRECISION FUNCTION DOT_PRODUCT( N, X, Y )

DOUBLE PRECISION X(*), Y(*)

INTEGER N

An ANSI C prototype of this function would look like

double dot_product_( int* n, double* x, double* y );

Here is an example of its usage:

double x[10], y[10], ans;

int ten = 10;

/* fill x and y with data */

ans = dot_product_( &ten, x, y );

Note how the numeric constant 10 had to be stored in a temporary variable so that a pointer to it
could be passed to the function.
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6.3 1-D vector indexing

In Fortran, the first element in an array has an index of 1, while in C and C++ the first element
has an index of 0. This difference will usually not manifest itself unless the Fortran function either
returns as output or expects as input, an array index. For example, the BLAS (see §2) routine
IDAMAX

INTEGER FUNCTION IDAMAX( N, DX, INCX )

DOUBLE PRECISION DX(*)

INTEGER N, INCX

returns the index of the largest element of an array (in absolute value). To properly interpret this
function’s output in C, you must subtract one:

int argmax = idamax_( &n, dx, &one ) - 1;

6.4 Complex numbers

Fortran includes built-in support for single- and double-precision complex numbers in its language.
The C language does not—although the C99 standard includes such support, it is not yet fully
implemented in compilers like gcc. So to emulate Fortran’s complex number data type is a bit of a
challenge. The most reliable way to do so is to create a double-precision array of twice the desired
length, and store the real and imaginary parts in alternating order (real first). For example, the C
equivalent to the Fortran array above might look like this:

double x[20];

#define x_real( k ) (x[2*k])

#define x_imag( k ) (x[2*k+1])

The macros x_real and x_imag are provided here to show how one would access the real and
imaginary portions of the k-th number, respectively.
Obviously, this is rather inconvenient, so another option is to use the C struct feature to define

a complex number data structure:

typedef struct { double re, im; } Fortran_Complex;

Fortran_Complex x[10];

Unfortunately, the C language standard cannot guarantee that this will work interchangeably with
Fortran’s DOUBLE COMPLEX data type. However, it very likely will work; and indeed it will work if
the following is true:

sizeof(Fortran_Complex) == 2*sizeof(double)

Therefore, if you use this technique, make sure to place this check in your program. As you
can imagine, certain C++ classes could also be used to implement Fortran-compatible complex
numbers, as long as the above size requirement is satisifed for them as well.

6.5 2-D array indexing

C, C++, and Java use a row-major storage format for 2-dimensional arrays. This means that the
elements are stored in contiguous memory, one complete row at a time:





1 2 3
4 5 6
7 8 9



 =⇒
[

1 2 3 4 5 6 7 8 9
]
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Fortran, on the other hand, uses column-major storage; which, as the name implies, stores the
elements of a 2D array one column at a time.





1 2 3
4 5 6
7 8 9



 =⇒
[

1 4 7 2 5 8 3 6 9
]

Effectively, this means that C stores the transpose of Fortran arrays (or vice versa). To deal with
this difference, one has several options:

• If a subroutine can work with a matrix or its transpose, make the appropriate adjustment in
the function call.

• When possible, utilize a C wrapper which manages the row-major/column-major differences
automatically. The standardized C BLAS interface (§2) does this, for example.

• Bypass C’s built-in support for 2D arrays, and store matrices as one-dimensional vectors, in
column-major form.

This final option may seem at first unreasonable, because it forces the user to manually implement
2D matrix indexing to access individual elements of a matrix. However, there are three reasons
why this disadvantage is not significant:

• By fully exploiting external libraries for matrix manipulation and computation will minimize
the need for 2D indexing.

• Matrix factorization methods assign special meaning to the columns of certain matrices—
suggesting that it would be convenient if the elements of each column were contiguous. For
example, in an eigenvalue decomposition AX = XΛ, the eigenvectors form the columns of
X. In column-major storage, each eigenvector is stored contiguously, simplifying their use in
further calculations.

• As you will see shortly, packed and sparse storage bypass both C and Fortran’s 2D indexing
ability, so it is often not possible to avoid the need to perform manual indexing calculations,
even if row-major storage is used.

For these reasons, I personally recommend this final option: storing matrices in column-major
format, even in C.
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