Adaptive Linear Filtering Using Interior Point supported and the second second

Lecturer: Tom Luo

Werview

A. Interior Point Least Squares (IPLS) Filtering

- Introduction to IPLS
- Recursive update of IPLS
- Convergence/transient analysis of IPLS

B. Applications

- noiteoititnabi matev2 -
- Beamforming –
- Channel equalization in a CDMA forward link

Interior Point Optimization for Optimal Linear Filtering

• A discrete-time linear system can be described by

$$\mathbf{w}_i = \mathbf{x}_i^T \mathbf{w}_* + \mathbf{v}_i, \qquad \mathbf{w}_i = \mathbf{1}, \mathbf{2}, \dots$$

• Using input output pairs $\{x_i, y_i\}$ the linear least-squares problem is then to estimate a filter w that minimizes the mean-squared error

$$(\mathbf{I}) \quad \mathbf{W}(n)_{xx} \mathbf{H}^{T} \mathbf{w} + (n)_{yx} \mathbf{q}_{n}^{T} \mathbf{w}^{2} - 2\mathbf{w}_{n}^{T} \mathbf{y}_{n}^{2} - 2\mathbf{w}_{n}^{T} \mathbf{w}^{2} \mathbf{w}^{2} + (n)_{yx} \mathbf{w}^{2} \mathbf{$$

where $\mathbf{y}_n = [y_1, y_2, \dots, y_n]^T$, $\mathbf{p}_{xy}(n) = \frac{1}{n} \sum_n \sum_{i=1}^n \mathbf{x}_i y_i$, $\mathbf{R}_{xx}(n) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^{i}$. Note: $\mathbf{p}_{xy}(n)$ and $\mathbf{R}_{xx}(n)$ are both recursively updatable with per-sample complexity of $O(M^2)$.

• The optimum linear filter then satisfies $abla \mathcal{F}_n(\mathbf{w}) = 0$, or $\mathbf{R}_{xx}(n)\mathbf{w} - \mathbf{p}_{xy}(n) = 0$.

One Motivation: Transient Convergence

(00' dialie A LS algorithm estimates (see e.g., Sayed and Kailath '96)

$$(u)_{yx}\mathbf{q} = \left[(u)_{xx}\mathbf{A} + \mathbf{I}\frac{\delta}{n} \right] =: \overset{sh}{\underset{n}{\overset{n}{\overset{n}{\overset{n}{}}}} \mathbf{W}$$

where $\frac{\delta}{n}$ is a regularization term to improve conditioning.

- Problem: The regularization depends entirely on the constant δ . If, for example,
- SNR is underestimated \Longrightarrow slower asymptotic convergence
- SNR is overestimated \Longrightarrow bad transient behaviour
- Remedy:

w
$$_n:=[lpha_{nx}\mathbf{R}+\mathbf{I}_{nx}\mathbf{R}+\mathbf{I}_{nx}]^{-1}$$
, $lpha_n$ adjusted adaptively

The Analytic Center Approach

Formulate a convex feasibility problem at each iteration. w is a feasible filter only if it is contained in

$$\Omega_n = \{ \mathbf{w} \in \mathbb{R}^M \mid \mathcal{F}_n(\mathbf{w}) \leq \tau_n, \|\mathbf{w}\|^2 \leq R^2 \},$$
(2)

- 1^{st} constraint: minimize the mean-squared error $\mathcal{F}_n(\mathbf{w})$. 2^{nd} constraint: make Ω_n a bounded region.
- The analytic center \mathbf{w}_n^a of Ω_n is the minimizer of

$$(\pi_n \| \mathbf{w} \| - \Gamma_n \mathcal{H})$$
 sol $- ((\mathbf{w})_n \mathcal{F} - \pi_n)$ sol $- = (\mathbf{w})_n \phi$

 $0=(\mathbf{w})_n\phi
abla$ gnivlos yd bnuot od neo doidw

$$\cdot (u)^{n} \mathbf{A} \mathbf{E}_{u} \left((u)^{xx} \mathbf{H} + \mathbf{I} \frac{\binom{u}{n} \mathbf{W}^{u}}{\binom{u}{n}} \right) = \overset{u}{\mathbf{N}} \mathbf{W} \quad \text{therefore} \quad \mathbf{W}_{a}^{u} = \begin{pmatrix} \mathbf{W}_{a}^{u} \mathbf{W}^{u} \mathbf{H} + \mathbf{I} \frac{\binom{u}{n} \mathbf{W}^{u}}{\binom{u}{n}} \mathbf{H} + \mathbf{I} \frac{\mathbf{W}^{u}}{\binom{u}{n}} \mathbf{H} + \mathbf{I} \frac{\mathbf{W}^{u}}$$

where
$$s_n(\mathbf{w}):= au_n-\mathcal{F}_n(\mathbf{w})$$
 and $t_n(\mathbf{w}):=\mathcal{R}^2-\|\mathbf{w}_n^a\|^2$.

n^{T} to noitinited

. $m^{1/n} t_{n} = m^{1/n} t_{n} t_{$

. The goal is to make $lpha_n \sim \|
abla \eta^* \nabla \| \sim \|
abla \| \mathbf{v}_n \mathbf{v}$ is the second seco

$$((u)^{hx}\mathbf{d} - \mathbf{w}(u)^{xx}\mathbf{H})\mathbf{z} = \mathbf{z}(\mathbf{w})^{u}\mathbf{f}\mathbf{\nabla}$$

`i ,sud⊤

- $\|\nabla \mathcal{F}_n(\mathbf{w})\|$ is large \Longrightarrow need α_n large for regularization.
- $\|\nabla \mathcal{L}_{\mathbf{w}}(\mathbf{w})\| \in \mathcal{L}_{\mathbf{w}}(\mathbf{w})$ a small $\omega_{\mathbf{w}}$

$$\|({}^{\mathrm{I}-u}_{\mathrm{o}}\mathbf{M})^{u}\mathcal{L}\Delta\|\frac{\underline{\zeta}\wedge}{\underline{\mathcal{H}}}\mathcal{G}=:{}^{u}s$$

2. Define

 $a_n s + ({}_{1-n}^{a} \mathbf{w})_n \mathcal{T} = {}_n \tau$ mort ylqmis swollot ${}_n \tau$ to noitiniteb edT .6

9

Asymptotic Convergence Analysis

Condition 1. (Bounded Autocorrelation matrix) There exist $n_0 > 0$, $\sigma_1 > 0$, $\sigma_2 > 0$, σ_2

$$\sigma_1 \mathbf{I} \leq rac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T \leq \sigma_2 \mathbf{I}, \qquad \forall n \geq n_0$$

Condition 2. (Bounded Outputs) There exists a fixed p_y such that for all $n > n_0$ there holds

$$\sum_{i=1}^{n} \frac{1}{n_{z}^{2}} \leq b^{n-1}$$

The left inequality in Condition 1 is known as weak persistent excitation condition.

Theorem 1. Let the sequence of estimates $\{w_n, n = 1, 2, 3, \ldots\}$ be generated by the IPLS algorithm. Then

$$(n/1) O = \|(n)_{yx}\mathbf{q} - \mathbf{w}(n)_{xx}\mathbf{A}\|_{\mathcal{L}} = \|(n\mathbf{w})_{n}\mathcal{T}\nabla\|$$

Transient Convergence Analysis

Condition 1. (Bounded Autocorrelation matrix) There exist $n_0 > 0$, $\sigma_1 > 0$, $\sigma_2 > 0$, σ_2

$$\sigma_1 \mathbf{I} \leq rac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^T \leq \sigma_2 \mathbf{I}, \qquad \forall n \geq n_0$$

Condition 2. (No Noise) The system is free from measurement noise, i.e.,

$$\mathbf{y}_i = \mathbf{I}, \mathbf{Z}, \mathbf{I} = i$$
 $\mathbf{x}_i^T \mathbf{w}_i \mathbf{x} = \mathbf{I}, \mathbf{Z}, \dots$

We assume that the data has no statistical fluctuations. Convergence then implies the phasing out of effects of initialization and thus is dictated entirely by the transient behaviour of the algorithm.

Theorem 2. Let the sequence of estimates $\{w_n, n \leq m\}$ be generated by the IPLS algorithm. If the observations are free of noise, then

$$\|\mathbf{w}_{n-1} - \mathbf{w}\| = O(R^{-1}) \|\mathbf{w}_{n-1} - \mathbf{w}\|$$

Jransient Analysis – a sizylenA tnaizner

 $\dots, \mathfrak{L} = i$, $\mathfrak{l} = \mathfrak{l} = \mathfrak{l}, \quad \mathfrak{l} = \mathfrak{l} = \mathfrak{l}, \quad \mathfrak{l} = \mathfrak{l} = \mathfrak{l},$.9lqm6x3

• RLS Assuming no statistical averaging (e.g., no noise)

$$n \forall \quad , \mathbf{I} = (u \mathbf{x}) \mathbf{H} = (\mathbf{x})_{vx} \mathbf{q} \quad , \mathbf{I} = (\mathbf{x})_{xx} \mathbf{H} = (\mathbf{x})_{xx} \mathbf{H}$$

 $L^{1-}(n/\delta + 1) = \frac{sh}{n}w$ of solution reduces to w^{-1} .

condition $abla h_n (\mathbf{w}^a_n) = 0$ for the analytic center becomes, • IPLS Now, $\mathcal{F}_n(\mathbf{w}) = (\mathbf{w})_n \mathcal{T} \nabla$ and $\nabla \mathcal{F}_n(\mathbf{w}) = 2(\mathbf{w} - 1)_n$. Evaluating τ_n , the

$$0 = \frac{2(w_n^a)^2}{2(w_n^a) - 2\mathcal{H}} + \frac{(1 - w_n^a)^2}{2(1 - w_n^a) - 2(1 - (1 - w_n^a)^2) + (1 - (1 - w_n^a)^2)^2}$$

which implies

$$|\mathbf{f} - \mathbf{f}_{1-n}^{b}w|({}^{\mathbf{f}} - \mathbf{A})O = |\mathbf{f} - \mathbf{f}_{n}^{b}w|$$

i.e., exponential decay of the transient error.

Direct Comparison of RLS, IPLS

calculations eaily accommodated	can be accommodated	noitetnemelqmi wobniw znibil2
precision	factor)	(əsej
bətimil fo	$(\lambda : forgetting$	beniertznoz ni)
səses ni bne , λ	lleme ei K nahw	Stability
to seulev lleme	broplems occur	Numerical
ta nəvə əldatz		
bətebommozze ylizeə	req. new algorithm	Additional constraints
λez	ou	noitezileitinl ot esenteudoA
$O(\mathcal{H}^{-n})$	(n/1)O	Transient Convergence
$O(M^{2,2})O$	$O(M^2)$	Computational Complexity
(n/1)O	(n/1)O	Asymptotic Convergence
SJGI	STA	Property

The Interior Point Least Squares (IPLS) algorithm

- . We don't need the exact analytic center of Ω_n , an approximate center is sufficient.
- 2. Such an approximate center is found by taking just a single Newton iteration in the minimization of $\phi_n({\bf w}).$

(E)
$$(1-u\mathbf{W})_n \phi \nabla^{1-}((1-u\mathbf{W})_n \phi^2 \nabla) - 1-u\mathbf{W} =: u\mathbf{W}$$

To compute (3) we need

(c)
$$\frac{(\mathbf{M})^{u} \boldsymbol{\gamma}}{\mathbf{I}^{2}} + \frac{(\mathbf{M})^{u} \boldsymbol{\gamma}}{L^{\mathbf{M}\mathbf{M}^{2}}} + \frac{(\mathbf{M})^{u} s}{u \boldsymbol{\varsigma}^{2} \boldsymbol{\Delta}} + \frac{(\mathbf{M})^{u} s}{u \boldsymbol{\varsigma}^{2} \boldsymbol{\Delta}^{2}} = (\mathbf{M})^{u} \phi_{z} \boldsymbol{\Delta}$$
(b)
$$\frac{(\mathbf{M})^{u} \boldsymbol{\gamma}}{\mathbf{M}^{2}} + \frac{(\mathbf{M})^{u} s}{u \boldsymbol{\varsigma}^{2} \boldsymbol{\delta}} = (\mathbf{M})^{u} \phi_{z} \boldsymbol{\Delta}$$

where
$$\nabla \mathcal{F}_n = -2\mathbf{p}_{xy}(n) + 2\mathbf{R}_{xx}(n)$$
 and $\nabla^2 \mathcal{F}_n = 2\mathbf{R}_{xx}(n)$.

3. To compute the Newton direction, an $O(M^{2.2})$ recursive update procedure has been devised (using the work of Powell, 1997).

Interior Point Least Squares (IPLS) Algorithm

Step 1: Initialization. Let β , R be given. Set $w_0 = 0$, $p_{xy}(0) = 0$, $R_{xx}(0) = 0$, $\nabla \mathcal{F}_0(0) = 0$.

Step 2: Updating. For $n \ge 1$, acquire new data \mathbf{x}_n, y_n . Then recursively update

$$\cdot_{n}^{T} \mathbf{x}_{n} \mathbf{x}_{n} \frac{1}{n} + (1-n)_{xx} \mathbf{A} \frac{1-n}{n} = (n)_{xx} \mathbf{A} \quad \cdot_{n} y_{n} \mathbf{x}_{n} \frac{1}{n} + (1-n)_{yx} \mathbf{q} \frac{1-n}{n} = (n)_{yx} \mathbf{q}$$

ətebqU

$$(1^{-u}\mathbf{M})^{u}\mathcal{L}\Delta$$
 pue $(1^{-u}\mathbf{M})^{u}\mathcal{L}_{Z}\Delta$

•
$$((5), (7), n)$$
 and $t_n(\mathbf{w}_{n-1})$ using the update procedure (or using (4), (5))
• $(\nabla^2 \phi_n(\mathbf{w}_{n-1})^{-1} \nabla \phi_n(\mathbf{w}_{n-1}))$ using the update procedure (or using (4), (5))

Step 3: Recentering. The new center of Ω_n is obtained by taking just one Newton iteration starting at \mathbf{w}_{n-1} :

$$(\mathbf{I}^{-u}\mathbf{w})^{u}\phi \Delta^{\mathbf{I}^{-}}((\mathbf{I}^{-u}\mathbf{w})^{u}\phi^{\mathbf{I}^{-}}\Delta) - \mathbf{I}^{-u}\mathbf{w} =: \mathbf{w}$$

Set n := n + 1, and return to Step 2.

Հորութ

Contributions

- provided a new look at (recursive) adaptive filtering
- first application of interior point optimization to a dynamic problem

Features of IPLS

- (n/1)O ster sht te vilically at the rate O(1/n) ullet
- exhibits fast transient convergence, and is robust to initialization
- easily accommodates additional linear or convex quadratic constraints, and is
- $O(M^{2.2})$ complexity

Application: System Identification

- Performance Measure $\varepsilon_{ip}(n) = \|\mathbf{w}_n \mathbf{w}_*\|^2$ and $\varepsilon_{rls}(n) = \|\mathbf{w}_{rls} \mathbf{w}_*\|^2$
- Sources (i) White Gaussian noise, (ii) White Gaussian noise filtered through

$$\frac{z^{-}z\varepsilon + z^{-}z\varepsilon + 1}{(z^{-}z^{+})(z^{-}z^{+})(z^{-}z^{+})(z^{-}z^{+})(z^{-}z^{+})(z^{-}z^{+})} = (z)H$$

- **SURs** (*i*) SUR₁ = 40dB, (*ii*) SUR₂ = 10dB
- Nominal Parameter Settings

$0001 = \mathcal{R}$	$\beta = 2$	SJGI
$b^{-01} = \delta$	$\lambda = 1$,	ราช

- Experiment \mathbf{l} w $\in \mathbb{R}^{20}$, w $(i) \in [-1, +1]$, 500 independent Monte Carlo trials
- Experiment 2 Comparing sliding window versions of RLS (Liu & He '95) and IPLS:

$$\partial \mathbf{1} = {}_{l}T$$
 , $\mathbf{M} \ni \mathbf{W}$

System Identification: Experiment 2

Figure 1: Comparison of sliding-window versions of IPLS and RLS when channel characteristics change abruptly (at iteration 100).

Application: Minimum Variance Beamforming

Beimrofmesa soneiseV muminiM

- By adaptively adjusting the tap weights $\hbar_i(n)$ the beamformer must
- Steering Capability: protect the target signal

$$\mathbf{c}^{H}(\theta)\mathbf{h}(n) = 1, \qquad \forall n, \ \theta = \theta_{1}, \theta_{2}, \dots, \mathbf{c}^{-j(M-1)\theta}],$$

where

Estimation Problem.

 ${}_{,i}\Lambda$ stragiow qet to rodmun : M

 θ_i : Electrical Angle determined by the direction of the target *i* with respect to the first sensor

2. Minimize the effects of the interferers $E(|y|^2)$ of the beamformer i.e., minimize the Output Power $E(|y|^2)$

This beamforming problem can be cast in the tramework of a Constrained Adaptive

Beamforming: Constrained Adaptive Estimation

(6)
minimize
$$\mathcal{F}_n := \frac{1}{n} \sum_{i=1}^n \lambda^{n-i} |d(i) - \mathbf{x}_i^T \mathbf{h}|^2,$$

 $\sum_{i=1}^n \mathbf{f}_n \in \mathbb{R}^M,$

əsuodsəl pəlisəp :
$$(\cdot)$$
: qesikeq kesk

$$\mathbf{x}_{i}^{i}$$
: vector input sequence $q(\cdot)$: desired response

During the adaption process we assume that no target is present. ullet In the Minimum Variance Beamforming problem the reference signal $d(\cdot)$ is zero.

• The rows of ${f C}$ correspond to steering vector constraints.

Beamforming: Numerical Simulation

Input: (interference at 0.3, 0.325 and 0.7)

 $(n)d + (\pi n 7.0) \operatorname{nis} + (\pi n \delta \Sigma \delta.0) \operatorname{nis} + (\pi n \delta.0) \operatorname{nis} = (n)x$

. $Bb0^{{ar A}}$ is estion neisened et ${A}0^{{ar A}}$: white Gaussian neise

(desired response at freq. 0.2 and 0.5)

$$\mathbf{C}^{\mathrm{T}} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} = \mathbf{1} \quad , \begin{bmatrix} (\pi \mathbf{2}.0)(\mathbf{1} - M) (\mathbf{0} \mathbf{2}.0) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{0} \mathbf{2}.0) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{0} \mathbf{2}.0) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) \\ (\pi \mathbf{3}.0)(\mathbf{1} - M) (\mathbf{1} - M) ($$

Beamforming: Numerical Simulation

 $\mathsf{Figure}\ \mathsf{2}:$ (a) Freq. response at Iteration 4000, (b) Mean-squared error in $\mathbf{h}(n)$

4 digits for LCFLS and IPLS	Precision
$\lambda = 0.99, \varepsilon = 0.01, R = 100, \beta = 3,000, \beta = \lambda$	SJql
$\lambda = 0.99, E_o = 0.1$	LCFLS
$1.0 = \eta$	ГСМЛ

Application: Channel Equalization in a CDMA Downlink

Figure 3: Discrete-time model of CDMA downlink

Equalizer/Decoder Structure

Figure 4: Code Matched Filter - Chip rate DFE

οnJ .O.Z

CDMA Downlink: System Description

Sources QPSK with uniform probabilities for each symbol (i.i.d.)

Fading Channel LOS component is 5 dB higher than 2 multipath components, fading rate $f_D=0.005,$ delay spread: $\leq 6T_{\rm c}$

Static Channel Fading Channel sampled at a random instant.

Experiment 1: Static Channel, Single user

$M_{ff}=14,M_{fb}=2,$ delay $=1,pfr=10^{-2}$	Equalizer
$\lambda = 1.0, \delta = R = 10^4, \beta = 2$	Algorithms
$N = 200, N_T = 10, C_L = 16, Users = 1$	lengi2

Experiment 1: Static Channel, 4 Users

$M_{ff}=14, M_{fb}=2,$ delay $=1, \eta, hI=10^{-2}$	Equalizer
$\Sigma = \delta$, $^{h}01 = \Re = \delta$, $0.1 = \lambda$	Algorithms
$N = 200, N_T = 10, C_L = 16, Users = 4$	lengi2

Experiment 1: Dependence on Training Length

$$\begin{array}{lll} \mbox{Message Signal} & N = 200, SNR = 12dB, C_L = 16, Users = 1 \\ \mbox{Algorithms} & \lambda = 1.0, \delta = R = 10^4, \beta = 2 \\ \mbox{Relations} & \lambda = 1.0, \delta = R = 10^4, \beta = 2 \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, \mbox{Relations} & M_{ff} = 10^{-2} \\ \mbox{Relations} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, \mbox{Relations} & M_{fb} = 1, \mbox{Relations} & M_{ff} = 1, \mbox{Relat$$

Experiment 2: Time-Varying Channel, Single user

$M_{ff}=14, M_{fb}=2,$ delay $=1, pfr=10^{-2}$	Equalizer
$\lambda = 0.85, \delta = R = 10^4, \beta = 2$	Algorithms
$N = 200, N_T = 2/10, C_L = 16, Users = 1$	lengi2

ס. ב_{uo}.

Teualizer

Experiment 2: Time-Varying Channel, 4 users

 $^{2-0}\mathfrak{l}=\mathfrak{1}\mathfrak{k}, \mathfrak{M}_{fb}=\mathfrak{2}, \mathsf{delay}=\mathfrak{1}, \mathfrak{k} =\mathfrak{10}, \mathfrak{k} = \mathfrak{10}$

οnJ .O.Z

Experiment 2: Dependence on Training Length

$$\begin{array}{lll} \mbox{Message Signal} & N = 200, SNR = 16dB, C_L = 16, Users = 1 \\ \mbox{Algorithms} & \lambda = 0.85, \delta = R = 10^4, \beta = 2 \\ \mbox{Algorithms} & \lambda = 0.85, \delta = R = 10^4, \beta = 2 \\ \mbox{Equalizer} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Equalizer} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Equalizer} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Equalizer} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Equal} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{Equal} & M_{ff} = 14, M_{fb} = 2, \mbox{delay} = 1, pfr = 10^{-2} \\ \mbox{delay} & M_{ff} = 10, M_{ff} = 10^{-2} \\ \mbox{delay} & M_{ff} = 10, M_{ff} = 10^{-2} \\ \mbox{delay} & M_{f$$

ס. ב_{uo}.

conclusions

- Transient convergence of IPLS is $O(1/R^n)$, .
- M > n nahw nava CLR of sonvergence to RLS even when transient convergence to RLS \bullet
- Gain of using IPLS over the RLS algorithm can range from 5-6 dB to well over 10 dB