Localization and Cutting-plane Methods

Idea of localization methods
bisection on R
center of gravity algorithm

analytic center cutting-plane method
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Localization

e f:R" — R convex (and for now, differentiable)
e problem: minimize f

e oracle model: for any x we can evaluate f and Vf(x) (at some cost)

from f(z) > f(x0) + Vf(x0)! (x — 29) we conclude

V(o) (@ —20) 20 = f(z) = f(xo)

i.e., all points in halfspace V f(zo)! (x — zg9) > 0 are worse than z;
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level curves of f

Lo

V f(zo)

Vf(:co)T(:I: —x9) >0

e by evaluating V f we rule out a halfspace in our search for z*:

z* € {x | Vf(xo)" (x — x0) <0}

e idea: get one bit of info (on location of z*) by evaluating V f

e for nondifferentiable f, can replace V f(x() with any subgradient
g € 0f (o)
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suppose we have evaluated V f(x1),...,Vf(xk)

then we know z* € {z | Vf(z;)! (z — x;) < 0}

Vf(x1)

V f(x2)

V f(xk)

on the basis of Vf(x1),...,Vf(xk), we have localized x* to a polyhedron

question: what is a ‘good’ point xx11 at which to evaluate V f7?
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Localization algorithm

basic (conceptual) localization (or cutting-plane) algorithm:

1. after iteration &£ — 1 we know x* € Pj_1:

Pio1={z | V(D) (z—2P) <0, i=1,...,k—1}

2. evaluate Vf(2*) (or g € 0f(z(¥))) for some 2F) € Pp_4

3. Pri=Pr_1N{z | V("N T(z — 20) <0}
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e P, gives our uncertainty of x* at iteration k
e want to pick (%) so that Pr1 is as small as possible

e clearly want (%) near center of C'%)

Prof. S. Boyd, EE3920, Stanford University



Example: bisection on R

e f:R—R
e P is interval

e obvious choice: z(F+1) .= midpoint(Py)

bisection algorithm
given interval C' = [I, u] containing x*
repeat
L.z:=(U+u)/
2. evaluate f/(x

2
)
3. if f(z) <0, 1=

. else u :=x
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Uk — Ui

length(Pri1) = g1 — lps1 = = (1/2)length(Py)

and so length(Py) = 2_’“Iength(730)

interpretation:

e length(Py) measures our uncertainty in x*

e uncertainty is halved at each iteration; get exactly one bit of info about
x™ per iteration

e # steps required for uncertainty (in z*) < e:

length(Pp) initial uncertainty

lo = lo : .
52 52 final uncertainty
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guestion:

e can bisection be extended to R™?

e or is it special since R is linear ordering?
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Center of gravity algorithm

take z(*t1) = CG(P},) (center of gravity)

CG(Pk)—/Pk:cda://Pkdx

theorem. if C' C R" convex, x; = CG(C), g # 0,
vol (CN{z|g"(z —z4) <0}) < (1—1/e)vol(C) =~ 0.63 vol(C)
(independent of dimension n)

hence in CG algorithm, vol(P;) < 0.63* vol(Py)
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e vol(P;)'/™ measures uncertainty (in z*) at iteration k
e uncertainty reduced at least by 0.63'/™ each iteration
e from this can prove f(z*)) — f(z*) (later)

e max. # steps required for uncertainty < e:

initial uncertainty

1.51nl : .
12082 final uncertainty

(cf. bisection on R)
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advantages of CG-method

e guaranteed convergence

e number of steps proportional to dimension n, log of uncertainty
reduction

disadvantages

e finding 2(**1) = CG(P}) is harder than original problem

e P becomes more complex as k increases
(removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)
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Analytic center cutting-plane method

analytic center of polyhedron P = {z |al2 <b;, i=1,...,m} is

AC(P) = argmin — Z log(b; — aj 2)

1=1

ACCPM is localization method with next query point z(**1) = AC(P;,)
(found by Newton's method)
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Outer ellipsoid from analytic center

e let x* be analytic center of P = {2 | al2 <Xb;, i=1,...,m}

e let H* be Hessian of barrier at x*,

* i a;a
H* = -V? Zlog(bi —a; 2) - Z (b; — al'x*)?

e then, PC & ={z| (2 —2*)'H*(2 — 2*) < m?} (not hard to show)
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Lower bound in ACCPM

let £(F) be outer ellipsoid associated with (%)

a lower bound on optimal value p* is

P> b (FE) 4907 -a))
zc&(k)

= F(@®) =y /gBTEE g

(my is number of inequalities in P})

gives simple stopping criterion /g T HF)~1g(k) < ¢/my,
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Best objective and lower bound

since ACCPM isn't a descent a method, we keep track of best point found,
and best lower bound

best function value so far: uy = r?inkf(:c(k))
1=1,...,

best lower bound so far: [}, = '_Hllanf(:C(k)) — mp/g®T Hk)—1g(k)

can stop when up — [, < €
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Basic ACCPM

given polyhedron P containing =*

repeat
1. compute x*, the analytic center of P, and H*
2. compute f(x*) and g € df(x*)
3. u := min{u, f(z*)}
= max{l, f(z*) —my/gTH*~g}
4. add inequality g? (z —2*) <0 to P
until u — [ < ¢

here m is number of inequalities in P
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Dropping constraints

add an inequality to P each iteration, so centering gets harder, more
storage as algorithm progresses

schemes for dropping constraints from P(%):

e remove all redundant constraints (expensive)
e remove some constraints known to be redundant

e remove constraints based on some relevance ranking
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Dropping constraints in ACCPM

v*is ACof P={z|alx <b;, i=1,...,m}, H* is barrier Hessian at z*

T %
bi —a; x
\/a,zTH*_la,i

define (ir)relevance measure n; =

T

e 1);/m is normalized distance from hyperplane a; x = b; to outer ellipsoid

e if n; > m, then constraint a?x < b; is redundant
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common ACCPM constraint dropping schemes:

e drop all constraints with n; > m (guaranteed to not change P)

e drop constraints in order of irrelevance, keeping constant number,
usually 3n — 5n
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Example

PWL objective, n = 10 variables, m = 100 terms

simple ACCPM: f(z®) and lower bound f(z*®) — m+/g®T HF)—14(F)
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simple ACCPM: uy, (best objective value) and [; (best lower bound)

10

0 50 100 150 200

Prof. S. Boyd, EE3920, Stanford University

22



ACCPM with constraint dropping
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. constraint dropping actually improves convergence (!)
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ACCPM with constraint dropping

number of inequalities in P:

200

150

100

dropm; > m
50 B R RLICI
keep 3n
O I I I
0 50 100 150
k

no dropping

Prof. S. Boyd, EE3920, Stanford University

200



Handling inequality constraints

minimize  fo(z)
subject to  fi(z) <0, i=1,...,m
same idea: maintain polyhedron P(¥) that contains z*

at each x, need oracle to give cutting-plane that separates x from z*,
i.e., g # 0 with
gl(z*—2) <0
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Cutting-plane oracle for problem with inequalities

case 1: z(*) feasible, i.e., f;(z*)) <0,i=1,...,m
e take cutting plane g = V fo(2*)) (or g € Ofy(z¥)))

e rules out halfspace of points with larger function value than current
point

case 2: (%) infeasible, say, f;(z*)) > 0;

o then Vfi(z")T (2 — ™) > 0= fi(x) > 0 = = infeasible,
so take g = V f;(z®)) (or g € 0f;(xM))

e rules out halfspace of infeasible points
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Stopping criterion

if 2(F) is feasible, we have a lower bound on p* as before:

p* 2 fo(z™) - mk\/Vfo(a:‘(k))TH(k)_1Vf0(x(’f))

if 2(F) is infeasible, we have for all x € £%) (outer ellipsoid)

filz) fi(@®) + Y f(z") T (@ — 2™)

Vv

Vv

[i@®) + inf Vfi(a") (@ -2 )

re& (k)

fi(a®) - mk\/ij(ZU(’“))TH("“)_lvfj(ZC("”)
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hence, problem is infeasible if for some j,

fj(a;(k)) — mk\/ij(x(k))TH(k)—1ij(x(k>) > 0

stopping criteria:

o if (%) is feasible and my\/V fo(x()THF) =1V fo(x(F)) < €

(z(*) is e-suboptimal)

o if fi(x®)) —my\/Vfi(xM)THE=-1Vf(x*) > 0
(problem is infeasible)
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