Localization and Cutting-plane Methods

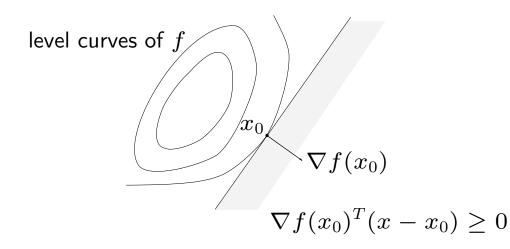
- idea of localization methods
- $\bullet\,$ bisection on R
- center of gravity algorithm
- analytic center cutting-plane method

Localization

- $f : \mathbf{R}^n \to \mathbf{R}$ convex (and for now, differentiable)
- **problem:** minimize *f*
- oracle model: for any x we can evaluate f and $\nabla f(x)$ (at some cost)

from $f(x) \ge f(x_0) + \nabla f(x_0)^T (x - x_0)$ we conclude $\nabla f(x_0)^T (x - x_0) \ge 0 \implies f(x) \ge f(x_0)$

i.e., all points in halfspace $\nabla f(x_0)^T(x-x_0) \ge 0$ are worse than x_0

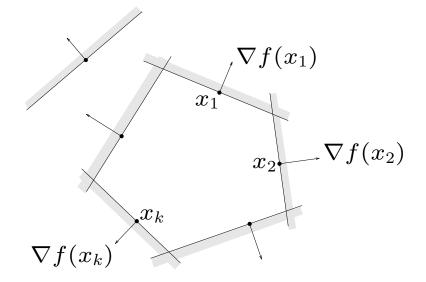


• by evaluating ∇f we rule out a halfspace in our search for x^\star :

$$x^{\star} \in \{x \mid \nabla f(x_0)^T (x - x_0) \le 0\}$$

- idea: get one bit of info (on location of x^*) by evaluating ∇f
- for nondifferentiable f, can replace $\nabla f(x_0)$ with any subgradient $g\in \partial f(x_0)$

suppose we have evaluated $\nabla f(x_1), \dots, \nabla f(x_k)$ then we know $x^* \in \{x \mid \nabla f(x_i)^T (x - x_i) \leq 0\}$



on the basis of $\nabla f(x_1), \ldots, \nabla f(x_k)$, we have **localized** x^* to a polyhedron **question:** what is a 'good' point x_{k+1} at which to evaluate ∇f ?

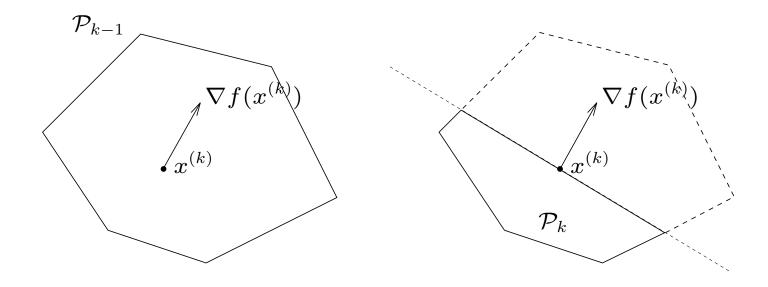
Localization algorithm

basic (conceptual) localization (or cutting-plane) algorithm:

1. after iteration k-1 we know $x^* \in \mathcal{P}_{k-1}$:

$$\mathcal{P}_{k-1} = \{ x \mid \nabla f(x^{(i)})^T (x - x^{(i)}) \le 0, \ i = 1, \dots, k-1 \}$$

- 2. evaluate $\nabla f(x^{(k)})$ (or $g \in \partial f(x^{(k)})$) for some $x^{(k)} \in \mathcal{P}_{k-1}$
- 3. $\mathcal{P}_k := \mathcal{P}_{k-1} \cap \{x \mid \nabla f(x^{(k)})^T (x x^{(k)}) \le 0\}$



- \mathcal{P}_k gives our uncertainty of x^* at iteration k
- want to pick $x^{(k)}$ so that \mathcal{P}_{k+1} is as small as possible
- clearly want $x^{(k)}$ near center of $C^{(k)}$

Example: bisection on R

- $f: \mathbf{R} \to \mathbf{R}$
- \mathcal{P}_k is interval
- obvious choice: $x^{(k+1)} := \operatorname{midpoint}(\mathcal{P}_k)$

```
bisection algorithm

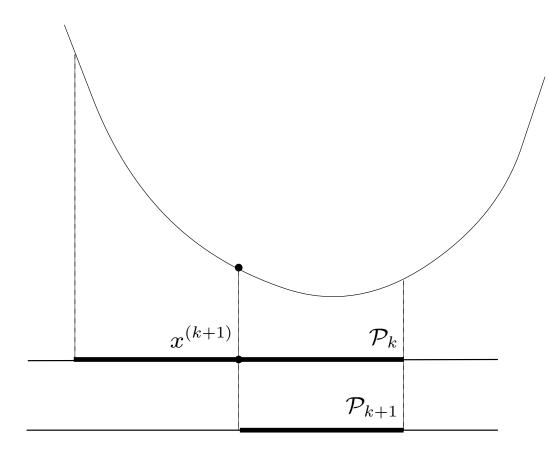
given interval C = [l, u] containing x^*

repeat

1. x := (l + u)/2

2. evaluate f'(x)

3. if f'(x) < 0, l := x; else u := x
```



$$\mathsf{length}(\mathcal{P}_{k+1}) = u_{k+1} - l_{k+1} = \frac{u_k - l_k}{2} = (1/2)\mathsf{length}(\mathcal{P}_k)$$

and so $\text{length}(\mathcal{P}_k) = 2^{-k} \text{length}(\mathcal{P}_0)$

interpretation:

- length(\mathcal{P}_k) measures our uncertainty in x^*
- uncertainty is halved at each iteration; get exactly one bit of info about x^* per iteration
- # steps required for uncertainty (in x^*) $\leq \epsilon$:

$$\log_2 \frac{\text{length}(\mathcal{P}_0)}{\epsilon} = \log_2 \frac{\text{initial uncertainty}}{\text{final uncertainty}}$$

question:

- can bisection be extended to \mathbf{R}^n ?
- or is it special since **R** is linear ordering?

Center of gravity algorithm

take $x^{(k+1)} = CG(\mathcal{P}_k)$ (center of gravity)

$$\mathsf{CG}(\mathcal{P}_k) = \int_{\mathcal{P}_k} x \, dx \, \bigg/ \int_{\mathcal{P}_k} dx$$

theorem. if $C \subseteq \mathbf{R}^n$ convex, $x_{cg} = CG(C)$, $g \neq 0$,

 $\operatorname{vol}\left(C \cap \{x \mid g^T(x - x_{cg}) \le 0\}\right) \le (1 - 1/e) \operatorname{vol}(C) \approx 0.63 \operatorname{vol}(C)$

(independent of dimension n)

hence in CG algorithm, $\mathbf{vol}(\mathcal{P}_k) \leq 0.63^k \mathbf{vol}(\mathcal{P}_0)$

- $\mathbf{vol}(\mathcal{P}_k)^{1/n}$ measures uncertainty (in x^*) at iteration k
- uncertainty reduced at least by $0.63^{1/n}$ each iteration
- from this can prove $f(x^{(k)}) \to f(x^{\star})$ (later)
- max. # steps required for uncertainty $\leq \epsilon$:

 $1.51n \log_2 \frac{\text{initial uncertainty}}{\text{final uncertainty}}$

(cf. bisection on **R**)

advantages of CG-method

- guaranteed convergence
- number of steps proportional to dimension *n*, log of uncertainty reduction

disadvantages

- finding $x^{(k+1)} = CG(\mathcal{P}_k)$ is harder than original problem
- \mathcal{P}_k becomes more complex as k increases (removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)

Analytic center cutting-plane method

analytic center of polyhedron $\mathcal{P} = \{z \mid a_i^T z \leq b_i, i = 1, \dots, m\}$ is

$$\mathsf{AC}(\mathcal{P}) = \underset{z}{\operatorname{argmin}} - \sum_{i=1}^{m} \log(b_i - a_i^T z)$$

ACCPM is localization method with next query point $x^{(k+1)} = AC(\mathcal{P}_k)$ (found by Newton's method)

Outer ellipsoid from analytic center

- let x^* be analytic center of $\mathcal{P} = \{z \mid a_i^T z \leq b_i, i = 1, \dots, m\}$
- let H^* be Hessian of barrier at x^* ,

$$H^* = -\nabla^2 \sum_{i=1}^m \log(b_i - a_i^T z) \bigg|_{z=x^*} = \sum_{i=1}^m \frac{a_i a_i^T}{(b_i - a_i^T x^*)^2}$$

• then, $\mathcal{P} \subseteq \mathcal{E} = \{ z \mid (z - x^*)^T H^*(z - x^*) \leq m^2 \}$ (not hard to show)

Lower bound in ACCPM

let $\mathcal{E}^{(k)}$ be outer ellipsoid associated with $\boldsymbol{x}^{(k)}$

a lower bound on optimal value p^{\star} is

$$p^{\star} \geq \inf_{z \in \mathcal{E}^{(k)}} \left(f(x^{(k)}) + g^{(k)T}(z - x^{(k)}) \right)$$
$$= f(x^{(k)}) - m_k \sqrt{g^{(k)T} H^{(k)-1} g^{(k)}}$$

 $(m_k \text{ is number of inequalities in } \mathcal{P}_k)$

gives simple stopping criterion $\sqrt{g^{(k)T}H^{(k)-1}g^{(k)}} \leq \epsilon/m_k$

Best objective and lower bound

since ACCPM isn't a descent a method, we keep track of best point found, and best lower bound

best function value so far: $u_k = \min_{i=1,...,k} f(x^{(k)})$

best lower bound so far: $l_k = \max_{i=1,...,k} f(x^{(k)}) - m_k \sqrt{g^{(k)T} H^{(k)-1} g^{(k)}}$

can stop when $u_k - l_k \leq \epsilon$

Basic ACCPM

given polyhedron \mathcal{P} containing x^* repeat 1. compute x^* , the analytic center of \mathcal{P} , and H^* 2. compute $f(x^*)$ and $g \in \partial f(x^*)$ 3. $u := \min\{u, f(x^*)\}$ $l := \max\{l, f(x^*) - m\sqrt{g^T H^{*-1}g}\}$ 4. add inequality $g^T(z - x^*) \leq 0$ to \mathcal{P} until $u - l < \epsilon$

here m is number of inequalities in \mathcal{P}

Dropping constraints

add an inequality to \mathcal{P} each iteration, so centering gets harder, more storage as algorithm progresses

schemes for dropping constraints from $\mathcal{P}^{(k)}$:

- remove all redundant constraints (expensive)
- remove some constraints known to be redundant
- remove constraints based on some relevance ranking

Dropping constraints in ACCPM

 x^* is AC of $\mathcal{P} = \{x \mid a_i^T x \leq b_i, i = 1, \dots, m\}$, H^* is barrier Hessian at x^*

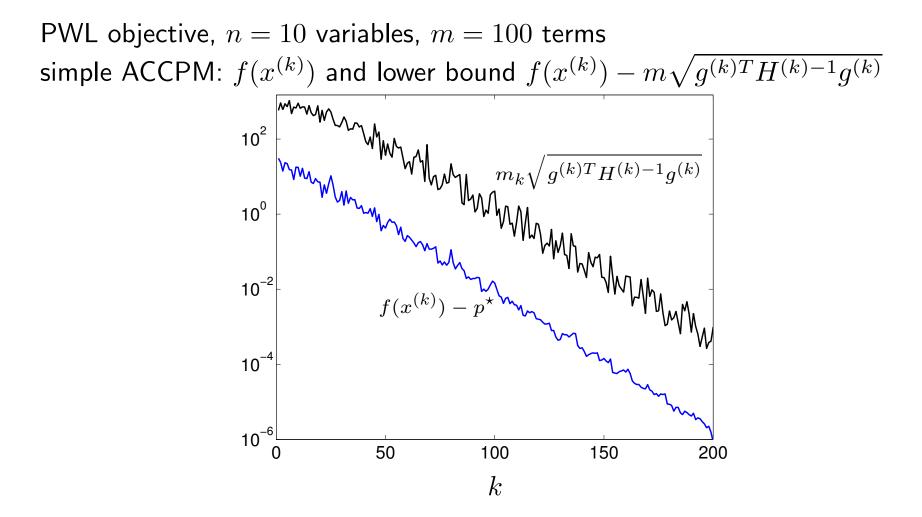
define (ir)relevance measure $\eta_i = \frac{b_i - a_i^T x^*}{\sqrt{a_i^T H^{*-1} a_i}}$

- η_i/m is normalized distance from hyperplane $a_i^T x = b_i$ to outer ellipsoid
- if $\eta_i \ge m$, then constraint $a_i^T x \le b_i$ is redundant

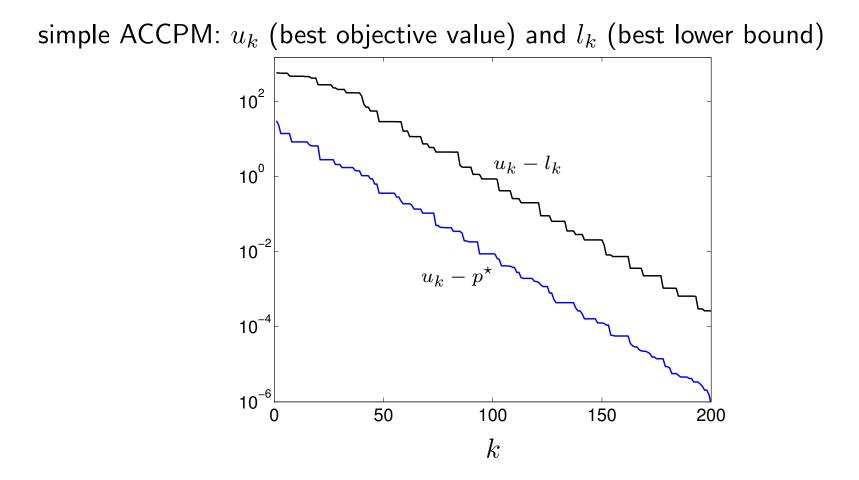
common ACCPM constraint dropping schemes:

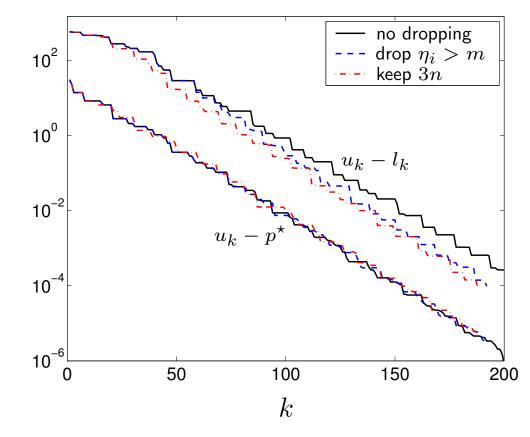
- drop all constraints with $\eta_i \ge m$ (guaranteed to not change \mathcal{P})
- drop constraints in order of irrelevance, keeping constant number, usually 3n 5n

Example



Prof. S. Boyd, EE392o, Stanford University

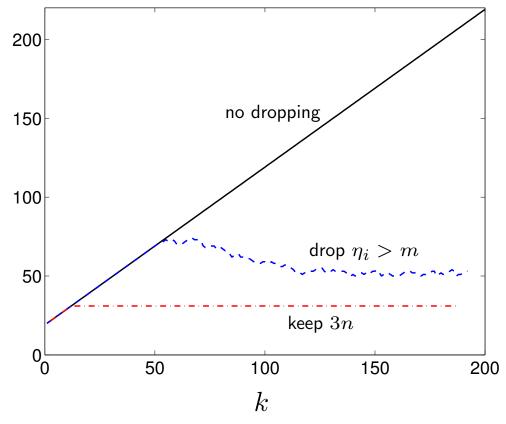




... constraint dropping actually **improves** convergence (!)

ACCPM with constraint dropping

number of inequalities in \mathcal{P} :



Handling inequality constraints

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \end{array}$$

same idea: maintain polyhedron $\mathcal{P}^{(k)}$ that contains x^{\star}

at each x, need oracle to give **cutting-plane** that separates x from x^{\star} , $i.e.,\ g\neq 0$ with

$$g^T(x^\star - x) \le 0$$

Cutting-plane oracle for problem with inequalities

case 1: $x^{(k)}$ feasible, *i.e.*, $f_i(x^{(k)}) \le 0$, i = 1, ..., m

- take cutting plane $g = \nabla f_0(x^{(k)})$ (or $g \in \partial f_0(x^{(k)})$)
- rules out halfspace of points with larger function value than current point

case 2:
$$x^{(k)}$$
 infeasible, say, $f_j(x^{(k)}) > 0$;

- then $\nabla f_j(x^{(k)})^T(x-x^{(k)}) \ge 0 \Longrightarrow f_j(x) > 0 \Longrightarrow x$ infeasible, so take $g = \nabla f_j(x^{(k)})$ (or $g \in \partial f_j(x^{(k)})$)
- rules out halfspace of infeasible points

Stopping criterion

if $x^{(k)}$ is feasible, we have a lower bound on p^* as before:

$$p^* \ge f_0(x^{(k)}) - m_k \sqrt{\nabla f_0(x^{(k)})^T H^{(k)-1} \nabla f_0(x^{(k)})}$$

if $x^{(k)}$ is infeasible, we have for all $x \in \mathcal{E}^{(k)}$ (outer ellipsoid)

$$f_{j}(x) \geq f_{j}(x^{(k)}) + \nabla f_{j}(x^{(k)})^{T}(x - x^{(k)})$$

$$\geq f_{j}(x^{(k)}) + \inf_{x \in \mathcal{E}^{(k)}} \nabla f_{j}(x^{(k)})^{T}(x - x^{(k)})$$

$$= f_{j}(x^{(k)}) - m_{k}\sqrt{\nabla f_{j}(x^{(k)})^{T}H^{(k)-1}\nabla f_{j}(x^{(k)})}$$

hence, problem is infeasible if for some j,

$$f_j(x^{(k)}) - m_k \sqrt{\nabla f_j(x^{(k)})^T H^{(k)-1} \nabla f_j(x^{(k)})} > 0$$

stopping criteria:

- if $x^{(k)}$ is feasible and $m_k \sqrt{\nabla f_0(x^{(k)})^T H^{(k)-1} \nabla f_0(x^{(k)})} \le \epsilon$ ($x^{(k)}$ is ϵ -suboptimal)
- if $f_j(x^{(k)}) m_k \sqrt{\nabla f_j(x^{(k)})^T H^{(k)-1} \nabla f_j(x^{(k)})} > 0$ (problem is infeasible)