
Localization and Cutting-plane Methods

• idea of localization methods

• bisection on R

• center of gravity algorithm

• analytic center cutting-plane method

Prof. S. Boyd, EE392o, Stanford University



Localization

• f : Rn → R convex (and for now, differentiable)

• problem: minimize f

• oracle model: for any x we can evaluate f and ∇f(x) (at some cost)

from f(x) ≥ f(x0) +∇f(x0)
T (x− x0) we conclude

∇f(x0)
T (x− x0) ≥ 0 =⇒ f(x) ≥ f(x0)

i.e., all points in halfspace ∇f(x0)
T (x− x0) ≥ 0 are worse than x0

Prof. S. Boyd, EE392o, Stanford University 1



PSfrag replacements

∇f(x0)

x0

level curves of f

∇f(x0)
T (x− x0) ≥ 0

• by evaluating ∇f we rule out a halfspace in our search for x?:

x? ∈ {x | ∇f(x0)
T (x− x0) ≤ 0}

• idea: get one bit of info (on location of x?) by evaluating ∇f

• for nondifferentiable f , can replace ∇f(x0) with any subgradient
g ∈ ∂f(x0)

Prof. S. Boyd, EE392o, Stanford University 2



suppose we have evaluated ∇f(x1), . . . ,∇f(xk)

then we know x? ∈ {x | ∇f(xi)
T (x− xi) ≤ 0}

PSfrag replacements
x1

x2

xk

∇f(x1)

∇f(x2)

∇f(xk)

on the basis of ∇f(x1), . . . ,∇f(xk), we have localized x? to a polyhedron

question: what is a ‘good’ point xk+1 at which to evaluate ∇f?

Prof. S. Boyd, EE392o, Stanford University 3



Localization algorithm

basic (conceptual) localization (or cutting-plane) algorithm:

1. after iteration k − 1 we know x? ∈ Pk−1:

Pk−1 = {x | ∇f(x(i))T (x− x(i)) ≤ 0, i = 1, . . . , k − 1}

2. evaluate ∇f(x(k)) (or g ∈ ∂f(x(k))) for some x(k) ∈ Pk−1

3. Pk := Pk−1 ∩ {x | ∇f(x(k))T (x− x(k)) ≤ 0}

Prof. S. Boyd, EE392o, Stanford University 4



PSfrag replacements

Pk−1

x(k) x(k)

∇f(x(k)) ∇f(x(k))

Pk

• Pk gives our uncertainty of x? at iteration k

• want to pick x(k) so that Pk+1 is as small as possible

• clearly want x(k) near center of C(k)

Prof. S. Boyd, EE392o, Stanford University 5



Example: bisection on R

• f : R→ R

• Pk is interval

• obvious choice: x(k+1) := midpoint(Pk)

bisection algorithm

given interval C = [l, u] containing x?

repeat
1. x := (l + u)/2
2. evaluate f ′(x)
3. if f ′(x) < 0, l := x; else u := x

Prof. S. Boyd, EE392o, Stanford University 6



PSfrag replacements
Pk

Pk+1

x(k+1)

Prof. S. Boyd, EE392o, Stanford University 7



length(Pk+1) = uk+1 − lk+1 =
uk − lk

2
= (1/2)length(Pk)

and so length(Pk) = 2−klength(P0)

interpretation:

• length(Pk) measures our uncertainty in x?

• uncertainty is halved at each iteration; get exactly one bit of info about
x? per iteration

• # steps required for uncertainty (in x?) ≤ ε:

log2

length(P0)

ε
= log2

initial uncertainty

final uncertainty

Prof. S. Boyd, EE392o, Stanford University 8



question:

• can bisection be extended to Rn?

• or is it special since R is linear ordering?

Prof. S. Boyd, EE392o, Stanford University 9



Center of gravity algorithm

take x(k+1) = CG(Pk) (center of gravity)

CG(Pk) =

∫

Pk

x dx

/

∫

Pk

dx

theorem. if C ⊆ Rn convex, xcg = CG(C), g 6= 0,

vol
(

C ∩ {x | gT (x− xcg) ≤ 0}
)

≤ (1− 1/e)vol(C) ≈ 0.63 vol(C)

(independent of dimension n)

hence in CG algorithm, vol(Pk) ≤ 0.63k vol(P0)

Prof. S. Boyd, EE392o, Stanford University 10



• vol(Pk)
1/n measures uncertainty (in x?) at iteration k

• uncertainty reduced at least by 0.631/n each iteration

• from this can prove f(x(k))→ f(x?) (later)

• max. # steps required for uncertainty ≤ ε:

1.51n log2

initial uncertainty

final uncertainty

(cf. bisection on R)

Prof. S. Boyd, EE392o, Stanford University 11



advantages of CG-method

• guaranteed convergence

• number of steps proportional to dimension n, log of uncertainty
reduction

disadvantages

• finding x(k+1) = CG(Pk) is harder than original problem

• Pk becomes more complex as k increases
(removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)

Prof. S. Boyd, EE392o, Stanford University 12



Analytic center cutting-plane method

analytic center of polyhedron P = {z | aTi z ¹ bi, i = 1, . . . ,m} is

AC(P) = argmin
z

−
m
∑

i=1

log(bi − aTi z)

ACCPM is localization method with next query point x(k+1) = AC(Pk)
(found by Newton’s method)

Prof. S. Boyd, EE392o, Stanford University 13



Outer ellipsoid from analytic center

• let x∗ be analytic center of P = {z | aTi z ¹ bi, i = 1, . . . ,m}

• let H∗ be Hessian of barrier at x∗,

H∗ = −∇2
m
∑

i=1

log(bi − aTi z)

∣

∣

∣

∣

∣

z=x∗

=

m
∑

i=1

aia
T
i

(bi − aTi x
∗)2

• then, P ⊆ E = {z | (z − x∗)TH∗(z − x∗) ≤ m2} (not hard to show)

Prof. S. Boyd, EE392o, Stanford University 14



Lower bound in ACCPM

let E(k) be outer ellipsoid associated with x(k)

a lower bound on optimal value p? is

p? ≥ inf
z∈E(k)

(

f(x(k)) + g(k)T (z − x(k))
)

= f(x(k))−mk

√

g(k)TH(k)−1g(k)

(mk is number of inequalities in Pk)

gives simple stopping criterion
√

g(k)TH(k)−1g(k) ≤ ε/mk

Prof. S. Boyd, EE392o, Stanford University 15



Best objective and lower bound

since ACCPM isn’t a descent a method, we keep track of best point found,
and best lower bound

best function value so far: uk = min
i=1,...,k

f(x(k))

best lower bound so far: lk = max
i=1,...,k

f(x(k))−mk

√

g(k)TH(k)−1g(k)

can stop when uk − lk ≤ ε

Prof. S. Boyd, EE392o, Stanford University 16



Basic ACCPM

given polyhedron P containing x?

repeat

1. compute x∗, the analytic center of P, and H∗

2. compute f(x∗) and g ∈ ∂f(x∗)
3. u := min{u, f(x∗)}

l := max{l, f(x∗)−m
√

gTH∗−1g}
4. add inequality gT (z − x∗) ≤ 0 to P

until u− l < ε

here m is number of inequalities in P

Prof. S. Boyd, EE392o, Stanford University 17



Dropping constraints

add an inequality to P each iteration, so centering gets harder, more
storage as algorithm progresses

schemes for dropping constraints from P (k):

• remove all redundant constraints (expensive)

• remove some constraints known to be redundant

• remove constraints based on some relevance ranking

Prof. S. Boyd, EE392o, Stanford University 18



Dropping constraints in ACCPM

x∗ is AC of P = {x | aTi x ≤ bi, i = 1, . . . ,m}, H∗ is barrier Hessian at x∗

define (ir)relevance measure ηi =
bi − aTi x

∗

√

aTi H
∗−1ai

• ηi/m is normalized distance from hyperplane aTi x = bi to outer ellipsoid

• if ηi ≥ m, then constraint aTi x ≤ bi is redundant

Prof. S. Boyd, EE392o, Stanford University 19



common ACCPM constraint dropping schemes:

• drop all constraints with ηi ≥ m (guaranteed to not change P)

• drop constraints in order of irrelevance, keeping constant number,
usually 3n – 5n

Prof. S. Boyd, EE392o, Stanford University 20



Example

PWL objective, n = 10 variables, m = 100 terms

simple ACCPM: f(x(k)) and lower bound f(x(k))−m
√

g(k)TH(k)−1g(k)

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

PSfrag replacements

k

f(x(k)) − p?

mk

√

g(k)TH(k)−1g(k)

Prof. S. Boyd, EE392o, Stanford University 21



simple ACCPM: uk (best objective value) and lk (best lower bound)

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

PSfrag replacements

k

uk − p?

uk − lk

Prof. S. Boyd, EE392o, Stanford University 22



ACCPM with constraint dropping

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

PSfrag replacements

k

uk − p?

uk − lk

no dropping
drop ηi > m
keep 3n

. . . constraint dropping actually improves convergence (!)

Prof. S. Boyd, EE392o, Stanford University 23



ACCPM with constraint dropping

number of inequalities in P:

0 50 100 150 200
0

50

100

150

200

PSfrag replacements

k

no dropping

drop ηi > m

keep 3n

Prof. S. Boyd, EE392o, Stanford University 24



Handling inequality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

same idea: maintain polyhedron P (k) that contains x?

at each x, need oracle to give cutting-plane that separates x from x?,
i.e., g 6= 0 with

gT (x? − x) ≤ 0

Prof. S. Boyd, EE392o, Stanford University 25



Cutting-plane oracle for problem with inequalities

case 1: x(k) feasible, i.e., fi(x
(k)) ≤ 0, i = 1, . . . ,m

• take cutting plane g = ∇f0(x
(k)) (or g ∈ ∂f0(x

(k)))

• rules out halfspace of points with larger function value than current
point

case 2: x(k) infeasible, say, fj(x
(k)) > 0;

• then ∇fj(x
(k))T (x− x(k)) ≥ 0 =⇒ fj(x) > 0 =⇒ x infeasible,

so take g = ∇fj(x
(k)) (or g ∈ ∂fj(x

(k)))

• rules out halfspace of infeasible points

Prof. S. Boyd, EE392o, Stanford University 26



Stopping criterion

if x(k) is feasible, we have a lower bound on p? as before:

p? ≥ f0(x
(k))−mk

√

∇f0(x(k))TH(k)−1∇f0(x(k))

if x(k) is infeasible, we have for all x ∈ E (k) (outer ellipsoid)

fj(x) ≥ fj(x
(k)) +∇fj(x

(k))T (x− x(k))

≥ fj(x
(k)) + inf

x∈E(k)
∇fj(x

(k))T (x− x(k))

= fj(x
(k))−mk

√

∇fj(x(k))TH(k)−1∇fj(x(k))

Prof. S. Boyd, EE392o, Stanford University 27



hence, problem is infeasible if for some j,

fj(x
(k))−mk

√

∇fj(x(k))TH(k)−1∇fj(x(k)) > 0

stopping criteria:

• if x(k) is feasible and mk

√

∇f0(x(k))TH(k)−1∇f0(x(k)) ≤ ε
(x(k) is ε-suboptimal)

• if fj(x
(k))−mk

√

∇fj(x(k))TH(k)−1∇fj(x(k)) > 0
(problem is infeasible)

Prof. S. Boyd, EE392o, Stanford University 28


