Decomposition Example

LP example

consider LP with variables are u and v

$$\begin{array}{ll} \text{minimize} & c^T u + \tilde{c}^T v \\ \text{subject to} & Au \preceq b \\ & \tilde{A}v \preceq \tilde{b} \\ & Fu + \tilde{F}v \prec h \end{array}$$

 $Fu+\tilde{F}v\preceq h$ is the **coupling constraint**; removing it allows problem to be solved via two separate LPs

Primal decomposition

introduce variable z, and express $Fu + \tilde{F}v \leq h$ as

$$Fu \leq z, \qquad \tilde{F}v \leq h-z$$

z sets the allocation of resources between the two subproblems

original problem is equivalent to master problem

$$minimize_z \quad \phi(z) + \tilde{\phi}(z)$$

where

$$\begin{array}{lcl} \phi(z) & = & \inf_{u} \; \{c^{T}u \mid Au \leq b, \; Fu \leq z\} \\ \tilde{\phi}(z) & = & \inf_{v} \; \{\tilde{c}^{T}v \mid \tilde{A}v \leq b, \; \tilde{F}v \leq h-z\} \end{array}$$

we can evaluate $\phi(z)$ and $\tilde{\phi}(z)$ in parallel by solving two LPs

to evaluate a subgradient of $\phi(z) + \tilde{\phi}(z)$:

- find λ , an optimal dual variable for first LP subproblem, for constraint $Fu \leq z$
- \bullet find $\tilde{\lambda},$ an optimal dual variable for second LP subproblem, for constraint $\tilde{F}v \preceq h-z$
- then $g = -\lambda + \tilde{\lambda} \in \partial (\phi(z) + \tilde{\phi}(z))$

we can use subgradient method (or ellipsoid, ACCPM, . . .) to solve master problem

Interpretation

- z fixes the allocation of resources between two subproblems
- master problem iteratively finds best allocation of resources
- at each step (in subgradient method), more of each resource is allocated to the subproblem with larger Lagrange multiplier

Example

 $n_u=n_v=10$ variables, $m_u=m_v=100$ private inequalities, p=5 complicating inequalities master problem solved by subgradient method, diminishing step size $\alpha_k=0.1/\sqrt{k}$

Prof. S. Boyd, EE392o, Stanford University

Dual decomposition

form partial Lagrangian, introducing Lagrange multipliers only for the coupling constraint $Fu + \tilde{F}v \leq h$:

$$L(u, v, \lambda) = c^T u + \tilde{c}^T v + \lambda^T (Fu + \tilde{F}v - h)$$

= $(F^T \lambda + c)^T u + (\tilde{F}^T \lambda + \tilde{c})^T v - \lambda^T h$

dual function is

$$q(\lambda) = \inf_{u,v} \{ L(u,v,\lambda) \mid Au \leq b, \ \tilde{A}v \leq \tilde{b} \}$$
$$= -\lambda^T h + \inf_{Au \leq b} (F^T \lambda + c)^T u + \inf_{\tilde{A}v \prec \tilde{b}} (\tilde{F}^T \lambda + \tilde{c})^T v$$

dual problem is

$$\begin{array}{ll} \text{maximize} & q(\lambda) \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

we solve this problem using the projected subgradient method to find a subgradient of -q at λ :

ullet let $ar{u}$ and $ar{v}$ be optimal solutions of the LP subproblems

$$\begin{array}{lll} \text{minimize} & (F^T\lambda+c)^Tu & \text{minimize} & (\tilde{F}^T\lambda+\tilde{c})^Tv \\ \text{subject to} & Au \preceq b & \text{subject to} & \tilde{A}v \preceq \tilde{b} \end{array}$$

• then
$$g = -F\bar{u} - \tilde{F}\bar{v} + h \in \partial(-q(\lambda))$$

Interpretation

- λ gives *prices* of resources
- subproblems are solved separately, taking income/expense from resource usage into account
- master algorithm adjusts prices
- prices on over-subscribed resources are increased; prices on undersubscribed resources are reduced, but never negative

(Same) example

subgradient method, step size $\alpha_k = 1/\sqrt{k}$

