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Here we consider games, which are optimization problems with more than one decision
maker (or player, in the terminology used in games), often with conflicting goals. The general
theory of games is quite complicated, but some classes of games are closely related to convex
optimization, and as a result have a nice theory, and are computationally tractable. These
results for games are closely related to so-called min-max theorems, which state that, in some
special cases, you can switch around the order of minimization and maximization without
changing the value. One very useful consequence is that we can solve certain robust and
minimax problems very effectively.

These notes cover some of these topics; see also the material in Boyd and Vandenberghe
(BV03].

1 The matrix game

A very basic game is a two-player, zero-sum, matrix game [Int02]. A matrix game is specified
by a payoff matrix P € R™*". Players 1 and 2 have m and n strategies respectively, and
each player picks his strategy without knowledge of the strategy of his opponent.

When player 1 picks strategy k, the possible payoffs are specified by the entries in the
kth row of the matrix, and if player 2 picks strategy (or column) [, then player 1 makes a
payment Py, to player 2. (The game is zero sum since the payoffs to the players are equal
and opposite.) Player 1 would like to choose his strategy k so as to maximize his payoff
— Py, t.e., to pick row k so as to make Py, as small as possible, whereas player 2 would like
to pick column [ so as to make his payoff Py, as large as possible.

1.1 Pure Strategies

Each player would like to choose his strategy to guarantee himself the best possible payoff,
regardless of what his opponent does. So player 1 must expect that if he picks row k, player
2 will choose [ such that Py is the largest entry in row k. This means he must choose as his
strategy that row k£ which minimizes the row maxima, ¢.e., the £ that solves the problem:

minimizey, max P (1)



Strategy 1 2 3| Row maxima
1 -1 1 0 1
2 0 4 6 6
Column minima | —1 1 0 1=1

Table 1: A two-person, zero-sum game with a saddle point.

Strategy 1 2 3 | Row maxima
1 6 -2 3 6
2 -4 5 4 5
Column minima | -4 -2 3 5#3

Table 2: A two-person, zero-sum game with no saddle point.

Similarly, player 2 chooses a strategy assuming that if he picks column /, player 1 will choose
his strategy k so as to minimize Py;. So player 2 will choose that value of [ which maximizes
the column minima, i.e., the [ that solves

maximize; mkin Py (2)

The inequality
max mkin Py Smkin max Py (3)

always holds, and has an obvious interpretation: it is always better to go second, ¢.e., to make
your choice knowing your opponent’s choice. In general, (3) need not hold with equality; if
it does, then the game is said to be strictly determined, and the number max; miny Py, is
said to be the value of the game. In a strictly determined game, there is no advantage to
knowing your opponent’s strategy.

Table 1 shows a payoff matrix for which (1) and (2) are equal, and table 2 shows a payoff
matrix for which the maximum of the row minima is not equal to the minimum of the column
maxima.

1.2 Mixed Strategies

We saw above that not every matrix game has a solution in terms of pure strategies. A mized
strategy is a probability distribution on a player’s set of choices, according to which the
player makes his choice, randomly and independently of the other player’s choice. Suppose
u = (u,...,u,) and v = (vy,...,v,) are the mixed strategies of player 1 and player 2; u; is
the probability that player 1 will choose strategy 4, v; is the probability that player 2 uses
strategy 7. Then, for payoff matrix P, the expected payoff from player 1 to player 2 is

> wv; Py = u” P, (4)

Now the optimization variables for players 1 and 2 are respectively the vectors u and v,
where v and v are both probability distributions, i.e., 17u =1, 1Tv =1, u > 0, v > 0.



Player 1 wishes to choose u to minimize u” Pv, while player 2 wishes to choose v to maximize
uT Pv. Note that the set of strategies is no longer a finite set, since the strategy now is the
vector u (or v, for player 2), rather than a choice of index i € 1,2,...,n (j € 1,2,...,m for
player 2).

Reasoning as before, player 1 chooses u to solve the problem

minimize max;—1__,(PTu);

subject to u >0, 1Tu=1, (5)
which is equivalent to the LP
minimize ¢
subject to u >0, 1Tu=1, (6)
PTy < t1.

Denote the optimal value of this problem by pj. This is the smallest expected payoff player 1
can arrange to have, assuming that player 2 knows the strategy of player 1, and plays to his
own maximum advantage.

Similarly, player 2 chooses v to solve the problem

maximize mini:l,...,n(PU)i (7)
subject to v >0, 1Tv=1;

this is equivalent to the LP

maximize v
subject to v >0, 1Tv =1, (8)
Pv > vl.

Denote the optimal value of this problem by p3. This is the largest expected payoff player 2
can guarantee getting, assuming that player 1 knows the strategy of player 2. We can
interpret the difference, pf — p5 (which is nonnegative), as the advantage conferred on a
player by knowing the opponent’s strategy.

It can be shown ([BV03, §5.2.5]) that the LPs (6) and (8) are duals, and using strong
duality (since the LPs are feasible), we have p; = p5. That is, any zero-sum matrix game
with mixed strategies has a unique value p = p7 = p3, which can be found as the solution
to either of the linear programs (5) or (7). The optimal mixed strategy for player 1, ugpt,
is found from the solution of (5). Since v is the dual variable associated with the inequality
Pty < 1, the optimal strategy for player 2, vy, can be obtained from the optimal dual
variables for (5), or directly by solving (7). Note that the optimal mixed strategies need
not be unique; however, we assume that a player is only interested in finding an optimal
strategy, since all optimal strategies lead to the same expected value of the game.

1.3 Optimal server location on network

We consider a network with n nodes, specified by an undirected graph G. A request originates
at a node on the network. The request is served by a server, also located at a node on the



network. The delay in serving the request is given by the (shortest) distance between the
server and request nodes. The goal is to place the server is such a way that we minimize the
delay. If the server knows, in advance, which node the request will come from, the server
simply places itself at the same node; in this case the delay is zero.

Now suppose the server does not know which node the request will come from, and wants
to place itself to minimize the worst-case delay. For this, the server should place itself at
a node which minimizes the maximum distance to any other node on the graph. Such a
node called a center of the graph. The center node need not be unique; it only has the
property that no matter where the request originates, the delay is never greater than dpn,
the distance from the center to the node farthest from it.

Suppose now that the location of the request is drawn from a probability distribution,
and the cost is measured by expected delay. (For example, requests come repeatedly, and
we consider the long term average of the delay.) The goal of the server now is to choose its
position so as to minimize the ezrpected delay. Here again, as in the deterministic case, there
are two situations. If the probability distribution of the requests vy is known to the server,
then to minimize the expected delay, the server simply chooses a probability distribution
that minimizes the expected delay, i.e., the u that solves

minimize (Pvy)"u
- T (9)
subject to 1'u = 1.

One solution to this LP is u = e;, where i = argmin; (Puvp);. That is, when the request
distribution is known, there is always a pure strategy for the server which minimizes the
expected delay. (The set of all solutions is the set of all probability distributions with
support on S, where S = {i : (Pvy); = min; (Puvy),}; each solution specifies a probability
distribution according to which the server could choose its position to minimize expected
delay.)

Now consider the situation where the distribution of requests is not known to the server.
Suppose that the goal is to find a server distribution that minimizes the worst possible ex-
pected delay, over all possible request distributions. In this case the probability distribution
according to which the server should locate itself is the solution of a min-max problem, which
can be formulated as a game.

The server and request are the players, and the moves or choices are the n nodes on the
graph. The server wants to minimize the payoff, which is the delay, and the (adversarial)
request wants to maximize it. When the request chooses to originate at node 7, and the
server is placed at node j, the payoff is Pj;, where P;; is the length of the shortest path
between nodes ¢ and j. The optimal (mixed) strategy for the server (and the worst possible
distribution of requests) is the solution of the matrix game with payoff matrix P.

We now consider the specific example, with 11 nodes, shown in figure 1. The payoff
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Figure 1: A network with 11 nodes. Next to each node i is the two-tuple (u},v}),
where u} is the probability of the server placing itself at node 4, and v} is the
probability of the request occuring at node i, where (u*,v*) is a solution of the

game.

matrix P for this graph is

00111212323 2]
10123232122
11012233221
12101232332
23210341233
P=|12223014343 (10)
2333410545 4
32321450123
21232341012
32233452101
12212334321 0]

Nodes 1, 2, 3 and 4 are all centers of the graph, and the distance from a center to the
node farthest from it is 3. If the request is unknown and deterministic, the server can place
itself at any of these centers, and be assured of a delay no greater than 3, no matter where
the request node is located.

Suppose the request is not static, but instead is known to be equally likely to come from
any node. Then to minimize the expected delay, the server should place itself at node 1 or 3
(or any combination of nodes 1 and 3 with probabilities that add to one). The corresponding
minimum expected delay is 1.636.

When the request distribution is not known to the server, the optimal mixed strategy is
found as the solution to the LP (6), with P as specified. An optimal probability distribution
for the server is

u* = (0.486,0.077,0,0,0,0.104, 0.035, 0.298, 0, 0, 0). (11)
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Note that the optimal u need not be unique. In this case, for example, the strategy u' =
(0.5,0.5,0,0,0,0,0,0,0,0,0) also solves the LP (6), and is optimal for the server. Similarly,
a worst possible probability distribution for the request nodes is

v* = (0,0,0,0,0,0,0.500,0,0.326, 0, 0.174). (12)

The value of the game, which is the smallest worst-case expected delay, is 2.5. That is,
with this service distribution v*, for any possible request distribution, the expected delay
will be at most 2.5.

We noted before that the vectors u and v need not be unique. The set of all optimal
u and v is the set of all primal and dual optimal solutions to the LP (6). That is, every
primal (dual) solution to (6) is an optimal strategy for the server (request), and conversely
any server (request) mixed strategy that solves the game must also be primal (dual) optimal
for (6). Observe that not every server strategy which optimizes the delay for the optimal
request strategy solves the game, i.e., not every solution to

minimize (Pv*)Tu

subject to 1Tu=1 (13)

is a solution of the game. This is because although such a solution minimizes the expected
delay when the request distribution is v*, it does not guarantee that the expected delay with
any request distribution is less than or equal to the value of the game. This happens because
the (bilinear) objective function is not strictly convex-concave in u and v, so that for a fixed
value of u, the optimizing v need not be unique (and vice versa).

2 Bilinear problems

Observe that we can now solve min-max problems with bilinear objective and separable
polyhedral constraints on the variables using the same ideas as above; here, as before, the
minimax is equal to the maximin. Consider the problem

minimize, maximize, T Py
subject to Az < b, (14)
Cy 2 d;

Let us assume that the feasible set is non-empty and bounded. We would like to solve this
problem, as well as show that its value is the same as the maximin problem

maximize, minimize, z’ Py
subject to Az < b, (15)
Cy 2 d;

i.e., the order of optimization does not matter.
We will solve (14) by transforming it to an LP using duality. Fix z, then

maximize, (zP7)"y

subject to Cy <d (16)



is an LP, the optimal value of which is a function of z. The dual of this LP is

minimize, d¥'\
subject to CT\ = Plz; (17)
A= 0.

Since we assumed the feasible set of (14) is non-empty and bounded, strong duality holds
for (16) and its dual (17), and their optimal values are finite and equal. So we can rewrite
(14) as
minimize, , d’\
subject to CTA = PTx,
Az <b,
A= 0;

(18)

which is an LP, and can be efficiently solved.
To show that (14) and (15) have the same value, we will rewrite (15) using duality as we
did earlier, and demonstrate that the resulting LP is the dual of (18). The dual of

minimize, (yP)’z

subject to Ax <b (19)
is the following problem
maximize, —b'v
subject to ATv + Py = 0; (20)
v >0,
and using strong duality as before, we can rewrite (15) as
maximize, , Ty
subject to  ATv + Py = 0; (21)
Cy = d,
v = 0.

It is easy to show that (18) and (21) are duals of each other. Start with (18), and write the
Lagrangian

L(z,\, py, po, pz) = dIN+ pT(Ax —b) + pP' X + ps(PTx — CTN)

22
= (d"+py — msCT)A+ (Wf A+ ps PPz — pifb 22)
S0 T T T
T\ —00; otherwise
and the dual problem is
maximize —b7 j,
subject to —Cpug+ e +d=20
AT,LL1 + P/,L3 =0 (24)
p1 = 0
p2 = 0
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which can be rewritten, eliminating us, as

maximize —b'

subject to Cus < d
ATy + Pz =0
1 = 0,

(25)

which is identical to (21). So the two problems (18) and (21) are duals. Because of our
assumption that the polyhedra Az < b and C'y < d are feasible and bounded, the problems
(18) and (21) are also feasible, and so strong duality obtains. We can solve (18) to obtain x
and the optimal value, and y from the dual variable corresponding to the equality constraint
CT\ = P"x, or obtain y directly from the solution of the LP (21).

2.1 Robust LP

To solve bilinear progams with separable polyhedral constraints, we use strong duality to
transform a minimax problem into a minimin problem, which is a linear program. A similar
idea can be used to rewrite a robust LP, where two variables are coupled through a bilinear
constraint, as a single linear program. Specifically, consider the robust LP

minimize ¢’z

subject to sup,,cy, (@ + Bu)Tz +b; <0, 1=1,...,m, (26)

where x € R" is the optimization variable, and u; € R™ is the uncertainty vector. The
problem data are ¢ € R", a; € R", B; € R™"™ and b € R™. The uncertainty polyhedrons
are defined as

UL{ueR" | Du=d}, i=1,...,m,

where D; € R™*™ and d; € R™. We will assume that the 4; are non-empty and bounded.
In principle we can solve the robust LP (26) by solving the linear program

minimize ¢’z

subject to (@; + Biw)Tx +0; <0, VYw, € V({U), i=1,...,m, (27)

where V(U;) denotes the set of vertices of the polyhedron #;. But the cardinality of V (i)
grows exponentially with m;, and so (27) is computationally tractable only when m;, i =
1,...,m are very small.

Using strong duality, we will transform the robust linear program (26) into a linear
program whose number of variables grows linearly with m;, = = 1,...,m. Let us first
express the robust LP problem (26) as

minimize Iz

subject to fi(z) <0, i=1,...,m, (28)
where f;(x) is the optimal value of the LP
maximize (27 B;)w; + (@] x + b;) (29)

subject to D;w; < d;.
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It is easy to show that the Lagrange dual of the linear program (29) is given by

minimize d] z; + (a] T + b;)
subject to D!z, = Bl'z, 2z >0. (30)

Since U; is bounded and non-empty, (29) is feasible (with a finite optimal value), and by
strong duality, (29) and (30) have the same optimum value. So f;(z) < 0 if and only if there
exists a z; such that ELZT.’E + dZTZi +b; <0, DiTzi = BZ-Tac, and z; > 0. Thus, the robust linear
program (26) is equivalent to the following linear program

minimize c'z

subject to D!'z; = Blz, i=1,...,m,
C_I,ZT.’L'—}‘d;FZZ—}—bZSO, izl,...,m,
z>0, 1=1,...,m.

(31)

3 Convex-concave games

An unconstrained (zero-sum, two-player) game on R? x RY is defined by its payoff function
f:RP*? — R. As before, the meaning is that player 1 chooses a value (or move) u € R?,
and player 2 chooses a value (or move) v € RY; based on these choices, player 1 makes a
payment to player 2, in the amount f(u,v). The goal of player 1 is to minimize this payment,
while the goal of player 2 is to maximize it.

We say that (u*,v*) is a solution of the game, or a saddle-point for the game, if for all
u, v,

fwv) < flu,v) < f(u,v*).

At a saddle point, neither player can do better by unilaterally changing his strategy; for
u = u*, v* maximizes f(u*,v) (which is a function only of v), and for v = v*, u* is the (not
necessarily unique) minimizer of f(u,v*). (Note that a saddle point here is a pure strategy,
as opposed to the mixed strategy saddle points in matrix games).

The game is called convez-concave if for each v, f(u,v) is a convex function of u, and for
each u, f(u,v) is a concave function of v. When f is differentiable (and convex-concave), a
saddle-point for the game is characterized by V f(u*,v*) = 0. This is easy to see: since f is
a convex function of u, the optimality condition for u* to be a minimum for f(u,v*) is that
V.f(u*,v*) = 0; similarly the condition for v* to be a maximizing point for the (concave)
function f(u*,v) is that V, f(u*,v*) = 0.

For a game with a twice-differentiable payoff function, the solution of the game can be
computed using an infeasible start Newton method; see [BV03, §10.3.4] for details.

3.1 Equality constraints

Suppose that we add linear equality constraints for the variables v and v. If the equality
constraints are separable in the variables u and v, the conditions for (u*, v*) to be a saddle
point are again not hard to derive. Specifically, suppose we want to find a saddle point for



the game with (convex-concave) payoff function f(u,v), subject to the constraints Au = b,
Cu = d. Then, the KKT conditions for the point u* to solve

minimize, f(u,v*)

subject to Au = b, (32)

are
Vof (W, v*) + ATy, =0,
Au* = b,

where 14 is the dual variable associated with the equality constraint Au = b. Similarly, the
condition for v* to solve

(33)

maximize, f(u*,v)
subject to Cv =d, (34)

are
Vof (u*,v*) + CTvy = 0,

Cv* =d.
To find the saddle point, we need to simultaneously solve the system of equations (33)-(35),

for which we use the infeasible start Newton method. Here, the equation defining the Newton
step (derived using the first order approximation) is

(35)

v, f 0 AT 0 Au —Vf, — AT1,
0 Vf 0 CT || Av | | =Vf,—CTu, (36)
A 0 0 O JANZ) b— Au
0o C 0 0 Avs d— Cv

All derivatives are evaluated at the current iterate, and the vector (Au, Av, Avy, Avy) is the
Newton step.

3.2 Inequality constraints

Suppose that we now add inequality constraints for the variables v and v to the original
unconstrained problem. In this case, we can use a barrier method to solve for the saddle
point. For simplicity, let us assume that we have no equality constraints. Specifically,
consider the convex-concave game with inequality constraints,

subject to filw) <0, i=1,....,m (37)
) <0, i

As before, we will assume that the constraint functions f; and f; are convex and differentiable,
and the objective function f; is differentiable and convex-concave, Also, for simplicity we
assume that dom f; = R" x R".
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3.2.1 Solution using barrier method

As for convex optimization problems, a barrier method can be used to solve a convex-concave
game with inequality constraints.
Let £ > 0, and

fulwv) = folu,v) — ilog(—fi(u)) n ilog(—ﬁw)).

The function % f+ approximates the objective function in (37) as ¢ — oo; the barrier term
is an approximation to the indicator function corresponding to the inequality constraints.
To solve the convex-concave game (37), we solve a sequence of unconstrained games that
approximate the original problem more and more closely as t — oo.

We can see that f;(u,v) is convex-concave in (u, v), from the convex-concave property of
fo; convexity of —log(—f;), and concavity of log(—f;). We will assume that it has a unique
saddle-point, (u*(t),v*(t)), which can be found using the infeasible-start Newton method.

As in the barrier method for solving a convex optimization problem, we can derive a
simple bound on the suboptimality of (u*(t),v*(¢)), which depends only on the problem
dimensions, and decreases to zero as t increases. Let U and V' denote the feasible sets for u
and v,

U={ul|fi(u)<0,i=1,....m}, V={vl|fi(v)<0,i=1,...,m}.

We will show that

folu(#),v*(#)) < nf folu,v*(2)) + ?
fo(u(#),v*(2)) = sup fo(u*(t),v) — %
veV
and therefore .
m+m

églf] folu,v*(t)) — qulel\g fo(u*(t),v) < .

Since (u*(t),v*(t)) is a saddle-point of the function

tfo(u,v) — Y log(—fi(w)) + > log(—fi(v)),
i=1 i=1
its gradient with respect to u, and also with respect to v, vanishes there:
tV o fo(u*(t),v*(t)) + Z Vi () = 0
1V, folu? (1), 0*(8) + 2 ——=Vfi(v*(t) = o.

It follows that u*(¢) minimizes



over u, where \; = 1/(—tfi(u*(t))), i.e., for all u, we have
ol () 0°(0) + 3N (1) < ol 07 (0) + SN
i=1

The lefthand side is equal to fo(u*(t),v*(t)) — m/t, and for all u € U, the second term on
the righthand side is nonpositive, so we have

Folur(6),0*(0) < inf folw,v*(9) + m.
A similar argument shows that

fo(u*(t),v*(2)) = sup fo(u*(t),v) — m/t.

veEV

Combining the bounds from (3.2.1) and (3.2.1), we obtain the bound on the suboptimality

of (u*(t),v*(t)):

m-+m

inf fo(u,v* (1)) = sup fo(w' (1), v) < (38)

vEV t

This bound on the suboptimality of (u*(¢),v*(t)) can be used in exit condition for the
barrier method. Equality constraints on u and v can be easily handled by combining the
results of (38) and (33)-(35).

3.3 An example of a convex-concave game

This example is from a simple communications problem. We consider m Gaussian commu-
nications channels, with signal power p; > 0 and noise (or interference) power n; > 0. The
capacity of channel i is proportional to log(1 + 8;p;/(0; +n;)), where f3; is positive constant,
and o; > 0 is the receiver noise. Our objective is the total capacity,

fp Zlog (1 + ,sz,n) . (39)

=1

It can be verified that f is concave in p and convex in n.

The goal is to allocate a given total power P across the channels in order to maximize
the sum rate f. If the noise powers n; are known, then the optimal allocation of powers
to maximize the capacity can be formulated as convex optimization problem, maximizing f
with respect to p, with n fixed. This problem can be solved by standard methods, or by a
special method called waterfilling ([CT91, §10.4], [BV03, §5.5.3]).

Now suppose that the noise powers are not known, but we do know that the total noise
power is N. The allocation of the noise powers can be thought of as made by an adversary,
whose aim is to reduce the total capacity of the systems. Another interpretation is that
we want to allocate signal powers so that, even with the worst possible allocation of noise
powers, we obtain the largest sum rate.

In this case, the capacity of the channel is a function of the signal powers p; and the noise
powers n;, where both p and n satisfy a power constraint: Y ; p; = P, > ;n; = N. The user
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would like to allocate the p; so as to maximize the channel capacity irrespective of the noise,
and the adversary would like to allocate the n; so as to minimize the capacity. The optimal
allocation of powers to the m channels can be found by solving a game with the noise and
signal powers as players. The objective function f is smooth, convex in n for every p and
concave in p for every n. Specifically, we would like to solve the following game

o . e . m Bip
maximize, minimize, > ,log(l+ 2E)

oi+n;
subject to 1Tp = P,
: N (40)
p>=0,n>0.

At a saddle point of the game, the value of p* must maximize the capacity for the noise distri-
bution n*; similarly n* must be the minimizer of f(p*, n). It is well known from information
theory that the optimal p* satisfies the following condition:

p;=(—N)", (41)

where v is chosen to satisfy
Z(l/ - N)" =P, (42)

and NV, is the effective noise power on each channel, N; = M This solution is called
waterfilling, since the way the power distributes itself among the various channels is identical
to the way water distributes itself in a vessel with uneven base. We can easily compute the
optimal value of v since the lefthand side is increasing in v, so we can, e.g., use bisection.

In a similar way we can derive a semi-analytical expression for n*, as the minimizer of
f(p*,n), since the objective is separable. To do this, we rewrite the function f to implicity
include the inequality constraint n > 0:

m ﬂzpl
S — Ei:l log(]‘ + oi4n; ) n t O 43

fw'm) { +00 n¥0 (43)
Now we have the following optimization problem

minimize,  f(p*,n)

subject to 17n = N, (44)

which has only one (equality) constraint. Associating the dual variable y with this constraint,
we can write the Lagrangian

Ln,p) = f(p*,n) + w(N — 17n)
Z (fz(nz) an) + /*LN,

where
log1—|—ff;l) n; >0 (45)
n; <0
S0 .
= >_min(fi(n;) — pn;) + pN. (46)
i—1 i
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1 2 3 4 8 9 10

5 6 7
Channel
Figure 2: A game with 10 channels. The height of patch ¢ is the effective noise

in channel i at the saddle point, (0; + n})/8;. The height of the water above each
patch is the optimal value of pj.

Since g is separable in n;, we can separately minimize each term. The minimizing n; is given

by

2 2
Substituting these equations for n; back into the constraint > n; = N, we see that u is the
(unique) real number that solves

ni = max{(=2Pi 4 1 ¢ e~ 172,01 (47)

$omax(-22 4 5 sy - 47 0y = (15)
i=1 2 2 H
(Again, the lefthand side is increasing in p, and can be found by bisection.)

Since the solution (p*,n*) of the game (40) is a saddle point of the game, p* must be the
waterfilling solution for the effective noise corresponding to n*, and n* must be the solution
to the minimization described above.

We use the barrier method to solve a specific instance of the game (40) with 10 channels.
The problem parameters are chosen as P = 20, N = 10, 0 = (2,6,5,8,3,9,5,6,7,3) and
Bi=1,1=1,...,m. The optimal allocation of signal powers is

p* = (2.734,2.333,2.733, 0.334, 2.733, 0.000, 2.733, 2.333, 1.333, 2.733),

and the worst noise is
n* = (3.6,0,0.6,0,2.6,0,0.6,0,0,2.6).

The value of the game, i.e., the capacity of the channels evaluated at (p*, n*), is C* = 2.860.
Figure 2 illustrates the distribution of the optimal p* for this game, together with the effective
noise (o; + n¥)/B; for the optimal n*.
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If the noise powers are distributed uniformly across the channels, then the capacity for
the allocation p* of signal powers is 3.206. As expected, this capacity is greater than C* —
since (p*,n*) is a saddle point, any distribution of noise powers n will lead to higher capacity
than n*. The best capacity with the uniform distribution of noise powers is 3.335, which,
again as expected, is greater than both C* and 3.206.

If the signal powers are equally distributed across all the channels, i.e., p; = P/m = 2,
then the channel capacity with the noise allocation n* is 2.777. This is smaller than C* as it
should be, since C* is the maximum capacity that can be achieved if the noise distribution
is n*. With the worst possible noise distribution for uniformly distributed signal powers, the
capacity is only a little less than 2.777; in general this capacity will be less than both C*
and the capacity obtained with n* and the uniform signal power distribution.

Another way one might expect to solve (40) is by alternate waterfilling ([Yu02, §3.3.3]).
Since p* maximizes f(p,n*) and n* minimizes f(p*,n), we iteratively compute the optimal
signal powers for a given noise distribution, then compute the minimizing noise powers from
this power distribution. That is, starting with an initial value ng, for this ny (given o and
B), perform waterfilling to find the maximizing pg. Then, for this py, find the vector n which
maximizes f(po,n), and so on, till the optimal values of the two problems are equal within
a specified tolerance e. Here, alternate waterfilling converges, and yields the pair (p*, n*)
specified above, which is the solution of the game.
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