Alternating Projections

- alternating projection algorithm
- convergence results
- example: PSD matrix completion
- example: relaxation method for linear inequalities

Prof. S. Boyd, EE392o, Stanford University

Alternating projection algorithm

C, D closed convex sets in \mathbb{R}^n ; goal is to find point in $C \cap D$

let P_C , P_D denote projection onto C and D

- start with any $x_0 \in C$
- alternately project onto C and D:

$$y_k = P_D(x_k), \qquad x_{k+1} = P_C(y_k)$$

generates sequence $x_k \in C$, $y_k \in D$

Prof. S. Boyd, EE392o, Stanford University

first few iterations for case $C \cap D \neq \emptyset$:

. . . suggests x_k , y_k converge to a point $x^* \in C \cap D$

Convergence results

- if $C \cap D \neq \emptyset$, x_k and y_k both converge to a point $x^* \in C \cap D$ (Cheney and Goldstein, 1959)
- if $C \cap D = \emptyset$ and $\operatorname{dist}(C, D)$ is achieved, then $x_k \to x^* \in C$, $y_k \to y^* \in D$, where $\|x^* y^*\|_2 = \operatorname{dist}(C, D)$

many generalizations, e.g., sequential projection onto k > 2 sets, . . .

Example: Positive semidefinite matrix completion

- some entries of matrix in Sⁿ fixed; find values for others so completed matrix is PSD
- $C = \mathbf{S}_{+}^{n}$, D is (affine) set in \mathbf{S}^{n} with specified fixed entries
- projection onto C by eigenvalue decomposition, truncation: if $Y_k = \sum_{i=1}^n \lambda_i q_i q_i^T$,

$$P_C(Y_k) = \sum_{i=1}^n \max\{0, \lambda_i\} q_i q_i^T$$

• projection of X_k onto D by re-setting specified entries to fixed values

specific example:

$$X = \begin{bmatrix} 4 & 3 & ? & 2 \\ 3 & 4 & 3 & ? \\ ? & 3 & 4 & 3 \\ 2 & ? & 3 & 4 \end{bmatrix}$$

- initialize with $Y_0 = X$, with ? entries set to 0
- Y_k have correct fixed entries; X_k are PSD
- $d_k = ||X_k Y_{k-1}||_F$ is distance from Y_{k-1} to PSD cone
- $\tilde{d}_k = ||Y_k X_k||_F$ is norm of error in fixed entries

Prof. S. Boyd, EE392o, Stanford University

7

Relaxation method for linear inequalities

(Agmon 1954) find a point in (non-empty) polyhedron

$$\mathcal{P} = \{ x \mid a_i^T x \le b_i, \ i = 1, \dots, m \}$$

use sequential projection onto the m halfspaces $a_i^T x \leq b_i$

• projection of z onto halfspace $a_i^T x \leq b_i$ is

$$P_i(z) = \begin{cases} z & a_i^T z \leq b_i \\ z - (a_i^T z - b_i)a_i & a_i^T z > b_i \end{cases}$$

 \bullet cycle through these projections to find point in ${\cal P}$

Example

find point in $\mathcal{P} \subseteq \mathbf{R}^{100}$, m = 1000 inequalities, $||a_i||_2 = 1$

maximum constraint violation: $r_k = \max_{i=1,...,m} \max\{0, a_i^T x_k - b_i\}$

Prof. S. Boyd, EE392o, Stanford University