
Alternating Projections

• alternating projection algorithm

• convergence results

• example: PSD matrix completion

• example: relaxation method for linear inequalities
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Alternating projection algorithm

C, D closed convex sets in Rn; goal is to find point in C ∩D

let PC, PD denote projection onto C and D

• start with any x0 ∈ C

• alternately project onto C and D:

yk = PD(xk), xk+1 = PC(yk)

generates sequence xk ∈ C, yk ∈ D
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first few iterations for case C ∩D 6= ∅:
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. . . suggests xk, yk converge to a point x
∗ ∈ C ∩D
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first few iterations for case C ∩D = ∅:
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. . . suggests xk → x∗, yk → y∗, with ‖x∗ − y∗‖2 = dist(C,D)
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Convergence results

• if C ∩D 6= ∅, xk and yk both converge to a point x
? ∈ C ∩D

(Cheney and Goldstein, 1959)

• if C ∩D = ∅ and dist(C,D) is achieved, then xk → x? ∈ C,
yk → y? ∈ D, where ‖x? − y?‖2 = dist(C,D)

many generalizations, e.g., sequential projection onto k > 2 sets, . . .
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Example: Positive semidefinite matrix completion

• some entries of matrix in Sn fixed; find values for others so completed
matrix is PSD

• C = Sn
+, D is (affine) set in Sn with specified fixed entries

• projection onto C by eigenvalue decomposition, truncation: if
Yk =

∑n
i=1

λiqiq
T
i ,

PC(Yk) =

n
∑

i=1

max{0, λi}qiq
T
i

• projection of Xk onto D by re-setting specified entries to fixed values
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specific example:

X =
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• initialize with Y0 = X, with ? entries set to 0

• Yk have correct fixed entries; Xk are PSD

• dk = ‖Xk − Yk−1‖F is distance from Yk−1 to PSD cone

• d̃k = ‖Yk −Xk‖F is norm of error in fixed entries
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convergence is linear:
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Relaxation method for linear inequalities

(Agmon 1954) find a point in (non-empty) polyhedron

P = {x | aT
i x ≤ bi, i = 1, . . . ,m}

use sequential projection onto the m halfspaces aT
i x ≤ bi

• projection of z onto halfspace aT
i x ≤ bi is

Pi(z) =

{

z aT
i z ≤ bi

z − (aT
i z − bi)ai aT

i z > bi

• cycle through these projections to find point in P
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Example

find point in P ⊆ R100, m = 1000 inequalities, ‖ai‖2 = 1

maximum constraint violation: rk = maxi=1,...,m max{0, aT
i xk − bi}
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