

Digital Watermarking

Ton Kalker Hewlett-Packard Labs

© 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Overview

Part I

- classification of watermarking
- -basic examples
- -applications
- Part II
 - Spread-Spectrum watermarking
- Part III
 - -Quantization Index Modulation
- Part IV
 - Costa's Theorem

Part I Introduction & Classification

What is Digital Watermarking

Original signal

- host (cover)
 - audio, image, video, 3D model, ...
- Auxiliary data
 - potentially related to host
- Multiplexed into one signal
 - Watermarked signal

Two receivers

- Humanoid receiver
 - signal detector
 - host signal
- Mechanical receiver
 - watermark detector
 - auxiliary data

Players

- Simon (sender)
 - Access to host signal
 - Transmitting message embedded in host
- Robert (human receiver)
 - Access to watermarked signal
 - Access to machine for message reading
- Evan (human or not)
 - Man in the middle
 - Intentional and/or non-intentional interference
 - Intentional: attacker
 - Non-intentional: channel
 - Has no access to (shared) secrets by Simon and Robert

Signal Roles

- M : transmitted message
 - Simon embeds in
- C_o: host signal
 - Simon modifies to
- C_w: watermarked signal
 - Evan modifies to
- C_{nw}: degraded & watermarked signal
 - Robert restores to
- C_n : restored signal
- M_n : estimated message

Classification: steganography

Steganography

Secret writing

Context

- Simon free to choose any host

Goal

- Communicate reliably a secret message to Robert
- Hiding the presence of the message to Evan

Note

- Host distortion may potentially be large!

SimpleStego (Memon et al.)

Initialization

- Simon and Robert agree upon a common cryptographic n-bit hash function h = H(C)
- Loop
 - Simon chooses an n-bit message M.
 - Simon shoots O(2ⁿ) pictures with his HP camera
 - After O(2ⁿ) pictures, Simon will have a picture C such that H(P) = M
 - Simon sends C
 - Robert retrieves M

SimpleStego (Memon et al.)

Theorem

- For SimpleStego, Evan cannot distinguish between an picture encoding a message or not
- SimpleStego is secure
- Issues
 - SimpleStego is impractical
 - Complexity
- Steganography objective
 - Design practical secure stego methods
 - Design stego detection methods

Classification: Authentication watermarking

Context

- Simon is given a specified host signal
- Goal
 - Transmit authenticity flag
 - One message only
 - Any interference by Evan flips the flag
 - Robert can verify authenticity
- Note
 - Embedded digital signature

SimpleAuth

Initialization

- Simon and Robert agree upon a common and public cryptographic n-bit hash function h = H(C)
- Simon and Robert agree upon a common secret n-bit message M.
- Simon is given signal C
- Loop
 - 1. Simon randomly modifies C yielding Q ~ C
 - 2. If not H(Q) = M, go to (1).
 - 3. If H(Q) = M, transmit Q

SimpleAuth

Theorem

- If n large enough, any modification of the transmitted signal Q by Evan will result in a flip of the authentication flag.
- Issues
 - SimpleAuth is impractical
 - Complexity of Simon and Robert is equal
- Authentication objectives
 - Design practical secure watermark authentication methods
 - Allow for localization of interference
 - Allow for benign modifications

Classification: Robust Watermarking

Context

- Simon is given a specified host signal

Goal

- Transmit a message M
- Any restricted interference by Evan retains M
 - Typically a distortion constraint
- Evan cannot read, modify or erase the message M
- Robert can reliably read M

Note

- Distortion constraints are typically not well-modeled
- In practical situations, Evan might resort to
 - Exploiting the weakness of perceptual models
 - Ignoring his imposed interference constraints

LSB Watermarking

- Initialization
 - Host signal P is an nxn image with 8-bit pixel values
 - Simon and Robert agree upon a secret pseudo-random common nxn bit array X.
- Transmission
 - Simon transmits the bit 'b' by replacing the LSB-plane of the image by 'Y = b XOR X'
 - Embedding distortion: 0.5 bit/pixel
- Channel
 - Evan restricted to only replace 25% of the LSB values: $Y \rightarrow Z$
 - Channel distortion: 0.25 bit/pixel
- Detection
 - Robert correlates LSB plane of Z with X
 - If n large, Robert will retrieve message bit b with high probability

LSB Watermarking

- If Evan obeys constraints
 - -LSB watermarking robust
- However
 - Interference constraint not perceptually motivated
 - Evan is allowed less distortion than Simon
- Objectives
 - Robust watermarking with
 - Relevant distortion constraints
 - Provable security

Compliant World

- All content is encrypted on all digital interfaces
- Link-by-link encryption; devices internally process clear content
- Controlled by CSS, 5C, 4C, ...
- Includes DVD players, DVD RAM, SDMI audio, DVD audio, PC's

Encryption

Non-Compliant World

- All analog devices, some digital • Marginalized by standardization efforts CD CD R Macrovision spoilers Analog Watermarks • Copyright warning X By licensing This material is copyright protected. contract no Copying is illegal. Digital unprotected Copy anyhow ? output **DVD RAM** No Don't show this message again Watermark To avoid analog circumvention
 - New laws in US and EU

Authentication

DVD ROM

also during playback

Watermark detection

Broadcast Monitoring

Name That Tune

22 5 March 2007

Helper Data for Processing

Formal Model

- WNR = Watermark to Noise Ratio
 - Channel / Embedding
 - WNR large: high throughput
- WDR = Watermark to Document Ratio
 - Embedding / Host
 - WDR large: high througput

Basic questions

- What is the maximal rate of reliable communication?
- What is the coding scheme to achieve maximal rate?

Classification: Reversible Watermarking

Context

- -A given host signal C_o and a message M
- Goal
 - -Transmitting M embedded in C_o
 - Retrieving M from received signal C_{nw}
 - Restoring C_o from received signal C_{nw}
- Note
 - In most reversible scenarios Evan is absent
 - Theory in the case of presence of Evan is not completely understood

Formal Reversible Model

SimpleRev

- Initialization
 - C is iid B(r) source sequence of length n
 - $C = \{c_1, c_2, ..., c_n\}$, all c_i independent
 - Prob(c_i = 1) = r, 0 < r < 1
 - Hamming distance
 - Evan absent
- Procedure
 - Compress C, say using Huffman encoding: >C<
 - |>C<| ∼ n H(r)
 - H(r) = -r log(r) (1-r) log(1-r): binary entropy
 - Add n (1 –H(r)) random message bits
- Reversing
 - Strip message bits
 - Decompress

SimpleRev

- Resulting parameters
 - Distortion: D = 0.5 bit per sample
 - Rate: R = 1- H(r) bit per sample
- Generalization
 - Apply previous procedure only for a fraction α of the bits in P.
- Resulting parameters
 - Distortion: **D** = 0.5 α bit per sample
 - Rate: R = (1- H(r)) α bit per sample
- **R(D)** relation (time-sharing)

Formal Reversible Model

Basic questions

- What is the maximal rate of reliable communication?
- What is the coding scheme to achieve maximal rate?
- Is the previous scheme optimal?

Optimal Reversible Watermarking

Classification: Fingerprinting

Context

- A group of N users
- A unknown group S of k colluders (multiple Evans)
- A single host signal C_o

Goal

- Embedding a message m_i in C_o for each user I
- Retrieving at least on identity I in S from a colluded version $[[C_S]]$
- where [[.]] is some averaging operator

Note

- some applications require the retrieval of all of S

Fingerprinting Application

- Alternative to Digital Rights Management (DRM)
 - DRM = pro-active protection of content
 - -active enforcement of allowed usage rules
 - FairPlay (iTunes), MS-DRM (Napster), OMA-DRM (Cingular), Helix (Real), ...
 - non-interoperable walled gardens

Fingerprinting

- retro-active enforcement of usage rules
- content labeled with user identity
- unauthorized distribution is traceable
 - even after collusion!

Digital Cinema

- Perceptibility
 - perceptibility of the watermark in the intended application

Original image

Image + hidden information

Robustness

 resistance to (non-malevolent) quality respecting processing

JPEG compression

Additive noise & clipping

Error Rates

- example: copyright detection

Complexity

- -hardware & software resources, real-time aspects
- -baseband vs. compressed domain
- Granularity
 - minimal spatio-temporal interval for reliable embedding and detection
- Capacity
 - related to payload
 - -#bits / sample

- Layering & remarking
 - -watermark modification
- Security
 - -vulnerability to intentional attacks
 - Kerkhoffs' principle

Part II Spread-Spectrum Watermarking

Patchwork

- 2 disjoint sets, A and B, of N/2 pixels each
 - pixels in each set ("patch") chosen randomly
 - assumption:

 $S = \left(\sum_{i} A_{i} - \sum_{i} B_{i}\right) / N \approx 0$

- embedding bit $b = \{-1, +1\}$: $A'_i \leftarrow A_i + b^*1$, $B'_i \leftarrow B_i - b^*1$

$$S' = \left(\sum_{i} A_{i}' - \sum_{i} B_{i}'\right) / N = \left(\sum_{i} A_{i} - \sum_{i} B_{i}\right) / N + (N / 2 - (-N / 2)) / N \approx b$$

- if $|S'| \approx 1$, watermark present with value sign(S')

- Prototypical spread-spectrum watermarking
 - communicate information via many small changes

Spread-Spectrum Watermarking

- Original Signal x[i] (Gaussian, iid, σ_X ,...)
- Watermark w[i] (Gaussian, iid, $\sigma_W,...$)
- Watermarked Signal
 - -(1/2)-bit version (copy protection)
 - H0: Y[i] = X[i]
 - H1: Y[i] = X[i] + W[i]
 - -1-bit version (helper data)
 - H0: Y[i] = X[i] W[i]
 - H1: Y[i] = X[i] + W[i]

Spread-Spectrum Watermarking

- Received Signal Z[i]
 - Distinguish between two hypotheses H0 and H1.
- Maximum likelihood testing
 - (Gaussian, iid) optimal tests statistic given by correlation
 - $D = (\Sigma_i Z[i] W[i]) / N$
- Not Marked : Z = X
 - $E[D] = (\Sigma_i E[X[i]] E[W[i]]) / N = 0$
 - $E[D^{2}] = E[(\Sigma_{i} X[i] W[i])^{2]} / N^{2} =$ $= (\Sigma_{i} E[X[i]^{2}] E[W[i]^{2}]) / N^{2} =$ $= \sigma_{x}^{2} \sigma_{w}^{2} / N$

Spread-Spectrum Watermarking

- Marked : Z = X + b W
 - $E[D] = b \sigma_W^2$ $\sigma_D^2 = \sigma_x^2 \sigma_W^2 / N$
- For N large D is approximately Gaussian distributed
- Error rate determined by Q(D / σ_D)
- Marked : $|E[D]| / \sigma_D = Sqrt(N) (\sigma_W / \sigma_X)$
- Robustness increases with
 - More samples
 - More watermark energy
 - Less host interference

Detection (effectiveness)

- Correlation sum D
 - assumed Gaussian
 - $-\sigma_W = 1$
 - variance $\sigma_X^2/(N)$
- Decision rule becomes

 $\hat{b} = \begin{cases} +1, & \text{if } D > 0; \\ -1 & \text{if } D < 0. \end{cases}$

Probability of error

Q function

$$Q\!\!\left(\!\frac{\sqrt{N}}{\sigma}\!\right)$$

Detection (robustness)

- Correlation sum D
 - assumed Gaussian
 - mean -a, +a
 - variance $\sigma_X^2/(N)$
- Decision rule becomes

 $\hat{b} = \begin{cases} +1, & \text{if } D > 0; \\ -1 & \text{if } D < 0. \end{cases}$

Probability of error

Q function

Detection (false positives)

- Correlation sum D
 - assumed Gaussian
 - mean -1, 0, +1
 - variance $\sigma_X^2/(N)$
- Decision rule becomes $\hat{b} = \begin{cases}
 +1, & \text{if } D > +T; \\
 -1, & \text{if } D < -T; \\
 0, & \text{if } |D| \le T.
 \end{cases}$
- Probability of false positive

Error Rates

Transmitting n-bit messages

Initialization

- for each message $m \in \{0, \, ..., \, 2^n\}$ select a watermark sequence W_m
- Simon and Robert share the code book {W_m}

Loop

- Simon chooses message m
- Simon adds W_m to host C_o
- Robert correlates C_{nw} with every element in code book
- Robert declares the message m' such that $W_{m^{\prime}}$ has the largest correlation with C_{nw}

Practical Spread-Spectrum

- Message M is represented as n-bit structure
- Each bit is associated with anti-podal pair of watermark sequences

$$-Y = X + W$$

- -Y = X W
- M is transmitted and received bit by bit

Watermark Embedding

Watermark Retrieval

Perceptual Watermarking

- Original x.
- Apply transform T: y = T(x)
 - -T = I, DCT, FFT, log, ... (or any combination thereof)
- Add pseudo-random sequence w: z = y + w
 - Allow adaptation of w to host signal
 - $Z = Y + \alpha W$
 - In position
 - only in textured image regions, not in silence
 - In value
 - less energy in flat regions than in textured regions
- Apply inverse transform: $x' = T^{-1}(z)$

Perceptual Watermarking

• T = I

- Spatial watermarking
- $w = X_A X_B$
 - Binary {-1,+1}-valued pseudo-random sequence
- Adaptation, e.g.
 - -Less power in flat regions
 - More power in textured regions

Cox Image Watermarking Scheme

Evan's options

Simple waveform processing

- "brute-force" approach
 - impairs watermark and original data
 - compression, linear filtering, additive noise, quantization

Detection-disabling methods

- disrupt synchronization
 - geometric transformations (RST), cropping, shear, resampling, shuffling
 - watermark harder to locate
- distortion metric not well defined

<u>Advanced jamming/removal</u>

- intentional processing to impair/defeat watermark
 - watermark estimation, collusion (multiple copies)

Ambiguity/deadlock issues

- reduce confidence in watermark integrity
 - creation of fake watermark or original, estimation and copying of watermark signal

De-synchronization

Attack

- harder to find watermark
- does not remove watermark
- How to measure distortion?
- Spread spectrum
 - fails without sync
 - re-synchronizing difficult
 - noiselike carrier
 - no peaks in frequency

StirMark

- Popular, free WWW software
 - simulate printing and scanning
 - nonlinear geometric distortion
 + JPEG
- Easy to use and test

Optimal Rate Question

Given a some statistical constraints on

- the host C_o
 - model and energy
- the embedding distortion P_e
 - type and power
- the channel distortion P_a
 - type and power
- and allowing for arbitrary long signals,
- what is the maximal <u>rate</u> (number of messages per sample) that can be achieved?

Maximal Transmission Rate

Assumptions

- $-C_o$ is a white Gaussian signal of power P_o
- The embedding power is restricted to P_e
- Evan implements an Additive White Gaussian Noise (AWGN) channel of Power P_a

Spread-Spectrum Bound

Observation

- $-\underline{host\ signal}$ and channel are AWGN to the watermark signal W_m
- Shannon's Theorem applies

$$R = \frac{1}{2}\log(1 + \frac{P_e}{P_o + P_a})$$

For small WDR and modest WNR

$$R = \frac{1}{2}\log(1 + \frac{P_e}{P_o})$$

- Host interference dominates

Performance regions

WDR small

$$R = \frac{1}{2}\log(1 + \frac{P_e}{P_o}) \approx \frac{1}{2P_o}P_e$$

- rate grows linear with embedding power

WDR large

$$R = \frac{1}{2}\log(1 + \frac{P_e}{P_o}) \approx \frac{1}{2}\log(\frac{P_e}{P_o}) = c + \frac{1}{2}\log(P_e)$$

-grows logarithmic with embedding power

Performance graph

