Basics of Watermarking

Ton Kalker Philips Research & University of Eindhoven Ton.Kalker@ieee.org

<u>Overview</u>

- Definition
- Why watermarking?
- Example
- Spread-Spectrum
- Matched Filtering
- Watermark parameters
- Attacks

DHILI

<u>Overview</u>

Definition

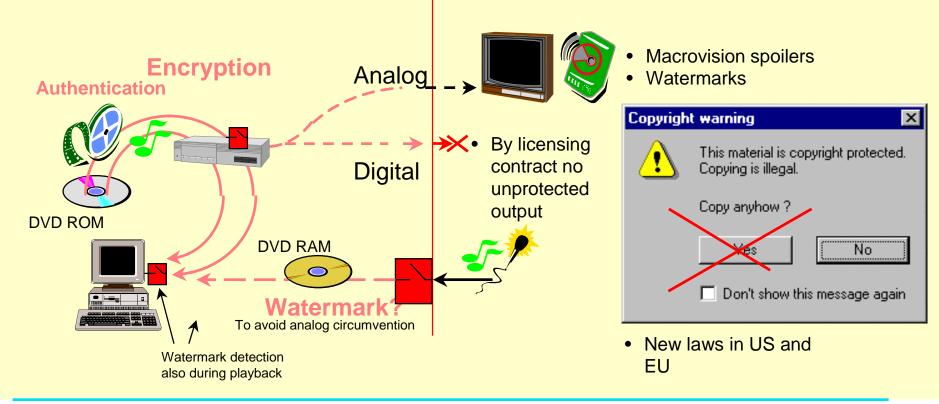
- Why watermarking?
- Example
- Spread-Spectrum
- Matched Filtering
- Watermark parameters
- Attacks

Watermarking =

- The art of actively modifying audio-visual content such that the modifications
 - Are imperceptible (who is the listener?),
 - Carry retrievable information,
 - That survives under degradations of the content,
 - And is difficult to remove & change by unauthorized users (cryptography).
- Watermarking is not adding meta-data to header fields!

<u>Overview</u>

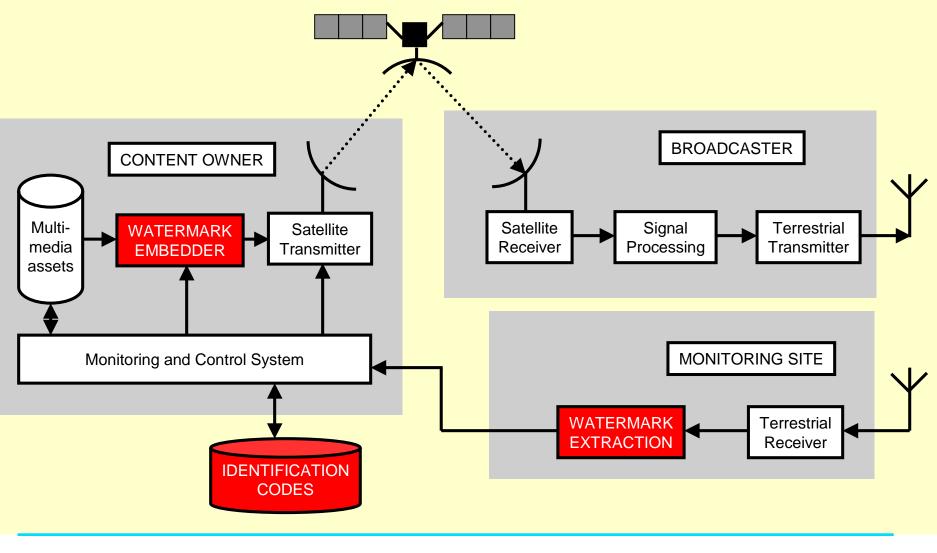
- Definition
- Why watermarking?
- Example
- Spread-Spectrum
- Matched Filtering
- Watermark parameters
- Attacks


Compliant World

- All content is encrypted on all digital interfaces
- Link-by-link encryption; devices internally process clear content
- Controlled by CSS, 5C, 4C, ...
- Includes DVD players, DVD RAM, SDMI audio, DVD audio, PC's

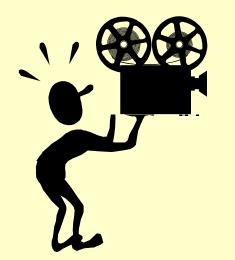
Non-Compliant World

- All analog devices, some digital
- Marginalized by standardization efforts

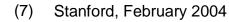

CD R

TU/e

Broadcast Monitoring

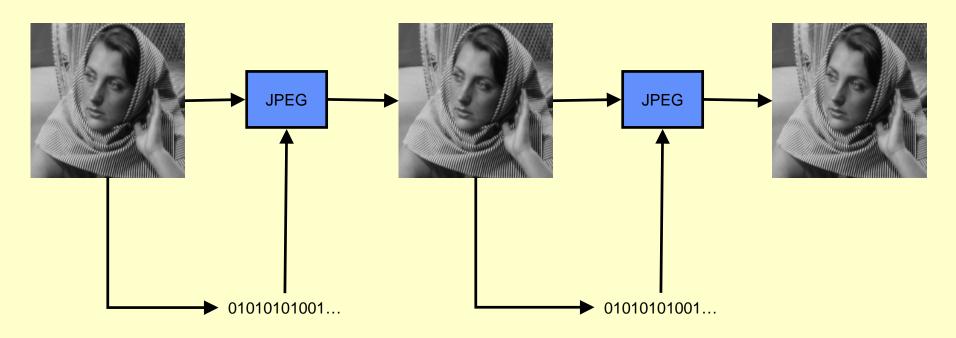


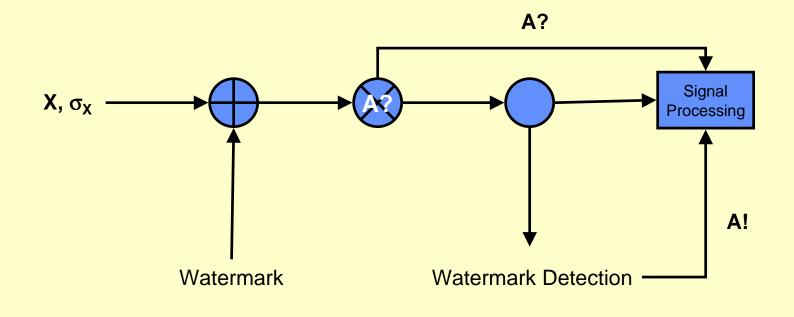
TU/e


PHILIPS

Digital Cinema

Name That Tune




Helper Data for Processing

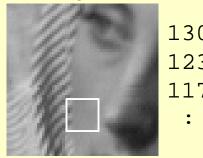
TU/e

Helper Data for Calibration

PHILIPS

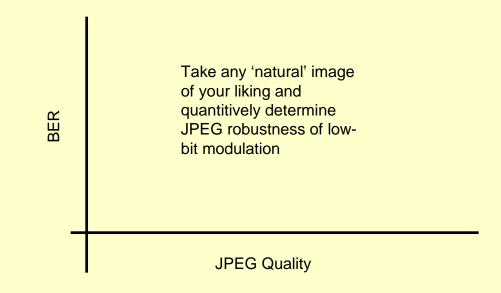
<u>Overview</u>

- Definition
- Why watermarking?
- Example
- Spread-Spectrum
- Matched Filtering
- Watermark parameters
- Attacks



Low-bit Modulation

• Early scheme: alter LSB or low-order bits
Original
After embedding



- → imperceptible (modify only LSBs)
 → secure (encrypt embedded information)
 → not robust (e.g., randomly set LSBs to 0 or 1)
- More accurate: secure info-hiding method

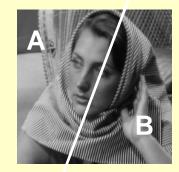
Low Bit Modulation

Patchwork

- 2 disjoint sets, A and B, of N/2 pixels each
 - pixels in each set ("patch") chosen randomly
 - assumption:

$$S = \left(\sum_{i} A_{i} - \sum_{i} B_{i}\right) / N \approx 0$$

- embedding bit $b = \{-1, +1\}$: $A'_i \leftarrow A_i + b^*1$, $B'_i \leftarrow B_i - b^*1$


$$S' = \left(\sum_{i} A_{i}' - \sum_{i} B_{i}'\right) / N = \left(\sum_{i} A_{i} - \sum_{i} B_{i}\right) / N + (N / 2 - (-N / 2)) / N \approx b$$

- if $|S'| \approx 1$, watermark present with value sign(S')

- Prototypical spread-spectrum watermarking
 - communicate information via many small changes

<u>Overview</u>

- Definition
- Why watermarking?
- Example
- Spread-Spectrum
- Matched Filtering
- Watermark parameters
- Attacks

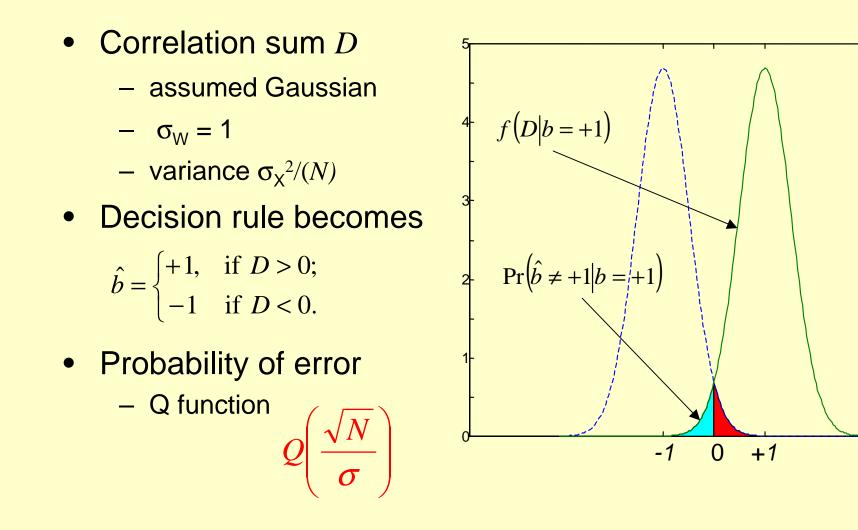
- Original Signal x[i] (Gaussian, iid, σ_X ,...)
- Watermark w[i] (Gaussian, iid, $\sigma_W,...$)
- Watermarked Signal

- (1/2)-bit version (copy protection)

- H0: Y[i] = X[i]
- H1: Y[i] = X[i] + W[i]
- 1-bit version (helper data)
 - HO: Y[i] = X[i] W[i]
 - H1: Y[i] = X[i] + W[i]

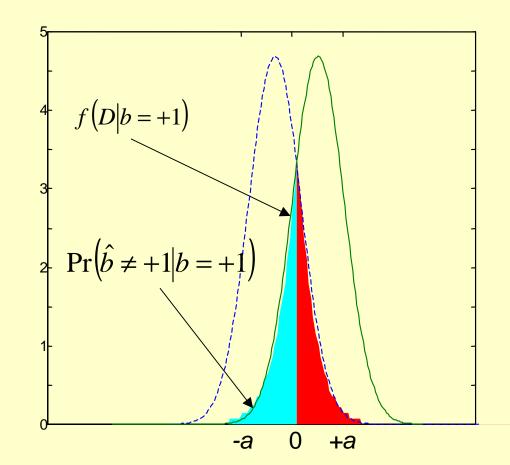
- Received Signal Z[i]
 - Distinguish between two hypotheses H0 and H1.
- Maximum likelihood testing
 - (Gaussian, iid) optimal tests statistic given by correlation
 - D = ($\Sigma_i Z[i] W[i]$) / N
- Not Marked : Z = X
 - $E[D] = (\Sigma_i E[X[i]] E[W[i]]) / N = 0$

$$- E[D^{2}] = E[(\Sigma_{i} X[i] W[i])^{2]} / N^{2} = = (\Sigma_{i} E[X[i]^{2}] E[W[i]^{2}]) / N^{2} = = \sigma_{X}^{2} \sigma_{W}^{2} / N$$



- Marked : Z = X + W
 - $E[D] = \sigma_W^2$ $\sigma_D^2 = \sigma_X^2 \sigma_W^2 / N$
- For N large D is approximately Gaussian distributed
- Error rate determined by Q(D / σ_D)
- Marked : E[D] / σ_D = Sqrt(N) (σ_W / σ_X)
- Robustness increases with
 - More samples
 - More watermark energy
 - Less host interference

Detection (effectiveness)

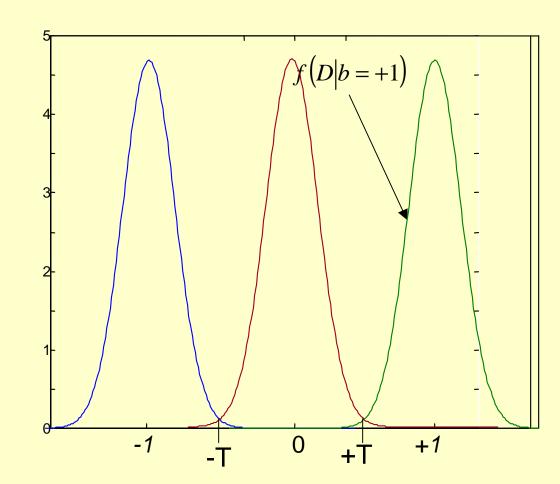

Detection (robustness)

- Correlation sum D
 - assumed Gaussian
 - mean -*a*,+*a*
 - variance $\sigma_X^2/(N)$
- Decision rule becomes

 $\hat{b} = \begin{cases} +1, & \text{if } D > 0; \\ -1 & \text{if } D < 0. \end{cases}$

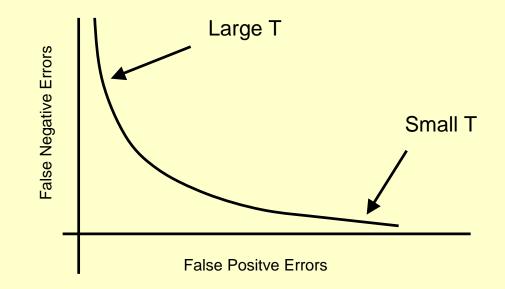
Probability of error

Q function

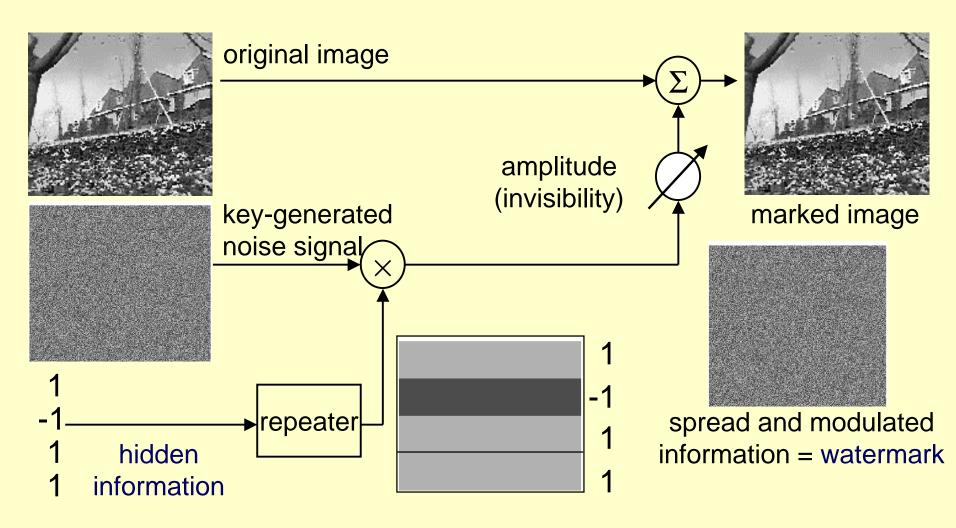


Detection (false positives)

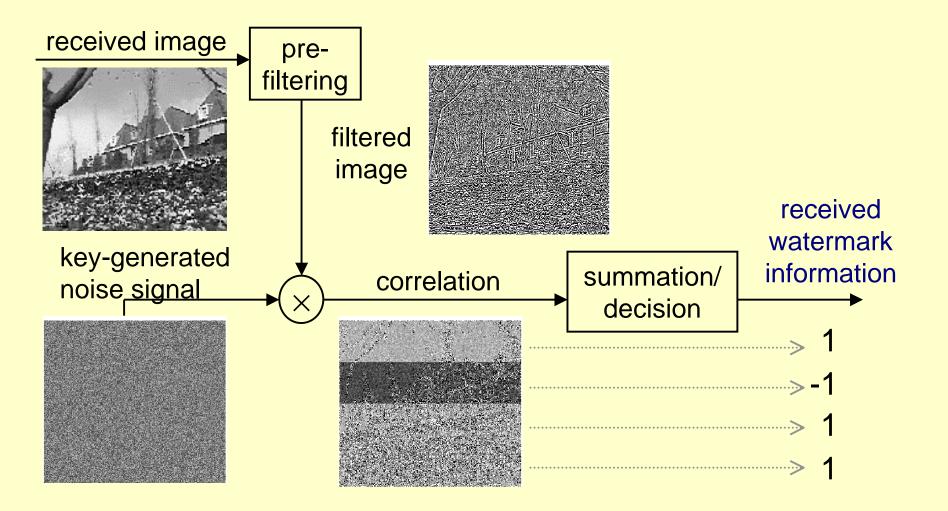
- Correlation sum *D*
 - assumed Gaussian
 - mean -1, 0, +1
 - variance $\sigma_{\chi^2}/(N)$
- Decision rule becomes


 $\hat{b} = \begin{cases} +1, & \text{if } D > +T; \\ -1, & \text{if } D < -T; \\ 0, & \text{if } |D| \le T. \end{cases}$

• Probability of false positive \sqrt{N}


Receiver-Operator Characteristic (ROC) Curve

Watermark Embedding

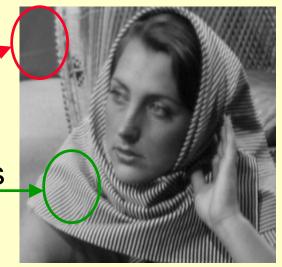


TU/e

PHILIPS

Watermark Retrieval

PHILIPS



- Original x.
- Apply transform T: y = T(x)
 - T = I, DCT, FFT, log, ... (or any combination thereof)
- Add pseudo-random sequence *w*: z = y + w
 - Allow adaption of w to host signal
 - $Z = Y + \alpha W$
 - In position
 - only in textured image regions, not in silence
 - In value
 - less energy in flat regions than in textured regions
- Apply inverse transform: $m = T^{-1}(z)$

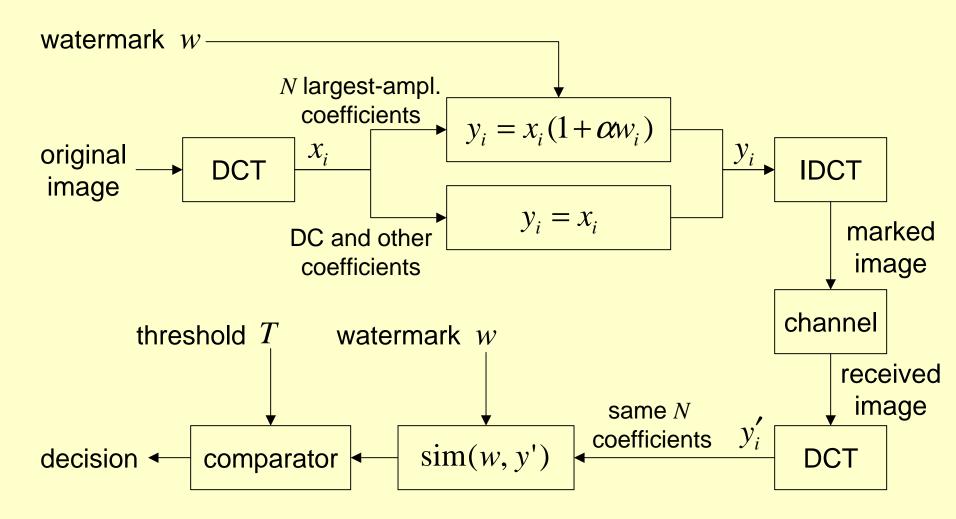
- Example: PatchWork
- T = I
 - Spatial watermarking
- $w = X_A X_B$
 - Binary {-1,+1}-valued pseudo-random sequence
- Adaptation, e.g.
 - Less power in flat regions
 - More power in textured regions

- Received data *m*[']
- Apply inverse transform T^{-1} : $z' = T^{-1}(m')$
- Assume $z' = y' + h^*w$
 - Hypothesis testing
 - -h = 0: not watermarked
 - -h = 1: watermarked
- Determine optimal detector
 - Prefilter + correlation
 - $D = \langle y', w \rangle + h \langle w, w \rangle$

Popular Example: NEC Scheme

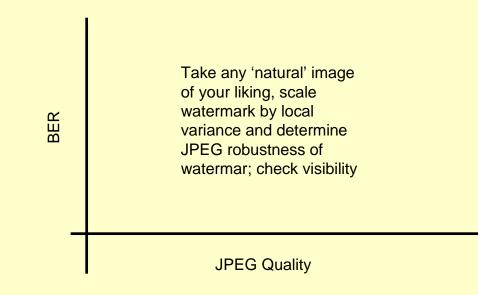
- Heuristic claim
 - watermark should be embedded in the "perceptually significant frequency components" for best robustness
- Embedding
 - N watermark samples $w_i \sim N(0,1)$; e.g., N = 1000
 - embed in the *N* largestamplitude DCT coefficients (except DC coefficient) *x_i*

- Detection
 - extract the same N DCTcoefficients y'_i
 - compute the <u>similarity</u> (normalized correlation) between y'_i and w_i $\langle w, y' \rangle$


$$\sin(w, y') = \frac{\langle y', y' \rangle}{\sqrt{\langle y', y' \rangle}}$$

- watermark w is present if sim(y',w) > T

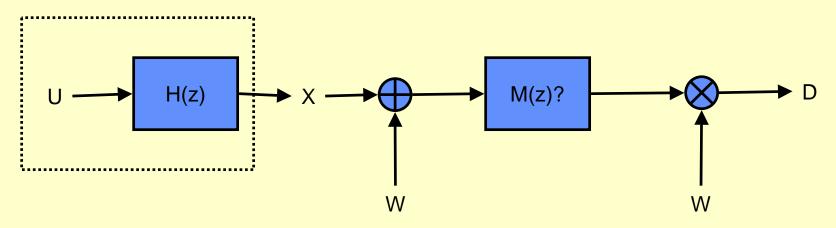
 $y_i = x_i (1 + \alpha w_i)$



Block Diagram of NEC Scheme

<u>Overview</u>

- Definition
- Why watermarking?
- Example
- Spread-Spectrum
- Matched Filtering
- Watermark parameters
- Attacks


Matched Filtering

- Audio-visual data are usually not well modelled as Gaussian iid sources!
- For images (for neighbouring pixels) – E[X[i] X[i+1]] / $\sigma_X^2 \approx 0.9$
- Better model X = H * U, where
 - H is low pass
 - U is random iid source
- Example : X[i+1] = a X[i] + U[i+1]
 - a ≈ 0.9
 - $H(z) = (1 a z^{-1})^{-1}$

Matched Filtering

- Correlation in z-domain notation
 - $A(z) = \Sigma a_i z^{-i}$

$$- [A(z)]_0 = a_0$$

- $\Sigma a_i b_i = [A(z) B(z^{-1})]_0$
- $D = [(M(z) H(z) U(z) + M(z) W(z)) W(z^{-1})]_0$

Matched Filtering

- Cost function
 - $C_M =$

= (Righthand term)² / E[variance lefthand term]

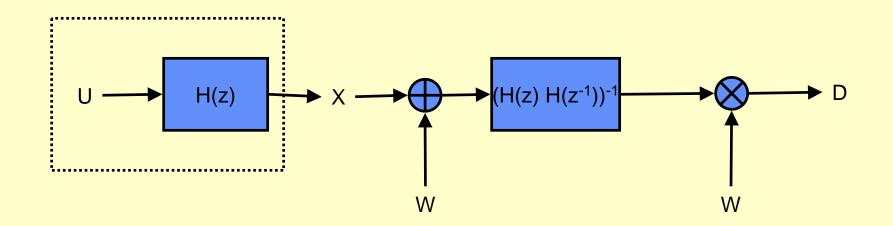
= $[M(z)W(z) W(z^{-1})]_0^2 / E[[(M(z) H(z) U(z) W(z^{-1})]_0^2]$

- Simplification
 - $-C_{M} =$

 $= (N^{2} [M(z)]_{0} \sigma_{W}^{4}) / (N \sigma_{W}^{2} \sigma_{U}^{2} [M(z) M(z^{-1}) H(z) H(z^{-1})]_{0})$

= N $(\sigma_W^2 / \sigma_U^2)$ ([M(z)]₀ / [M(z) M(z⁻¹) H(z) H(z⁻¹)]₀)

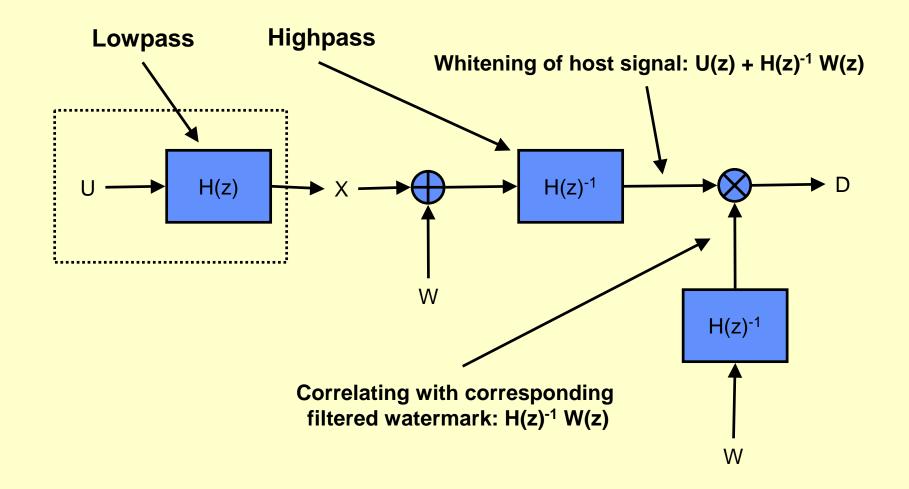
Matched Filtering

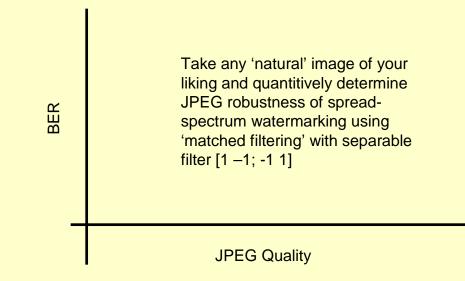

- Optimize in the frequency domain
 - $\quad \mu_i = M(\omega_i), \ \eta_i = H(\omega_i)$
 - $C_{M} = \Sigma \mu_{i} / (\Sigma \mu_{i}^{2} \eta_{i}^{2})$
 - We may assume $\Sigma \mu_i = 1$
 - Using Lagrange multipliers we find

$$- \mu_i = 1 / \eta_i^2$$

$$- M(z) = (H(z) H(z^{-1}))^{-1}$$

Matched Filtering




Matched Filtering

Spread-Spectrum Watermarking

<u>Overview</u>

- Definition
- Why watermarking?
- Example
- Spread-Spectrum
- Matched Filtering
- Watermark parameters
- Attacks

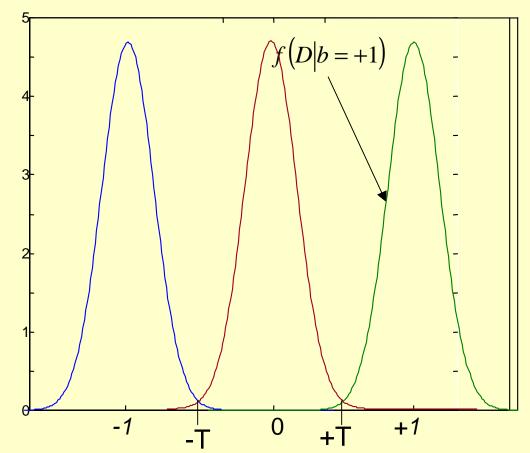
- Perceptibility
 - perceptibility of the watermark in the intended application

Original image

Image + hidden information

- Robustness
 - resistance to (non-malevolent) quality respecting processing

JPEG compression


Additive noise & clipping

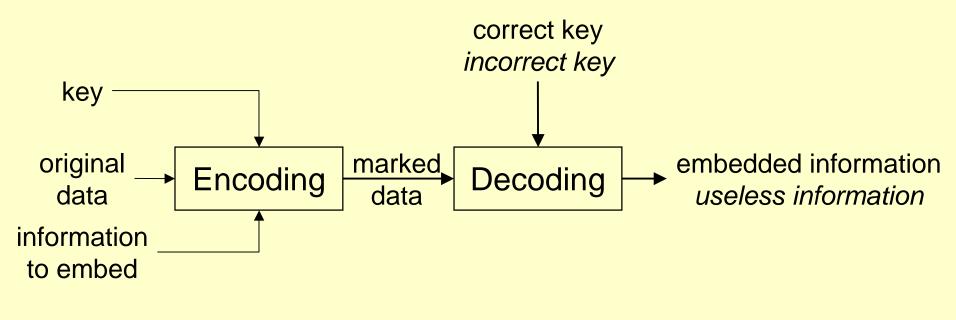
• Error Rates

TU/e

PHILIPS

- Complexity
 - hardware & software resources, real-time aspects
 - baseband vs. compressed domain
- Granularity
 - minimal spatio-temporal interval for reliable embedding and detection
- Capacity
 - related to payload
 - #bits / sample

- Layering & remarking
 - watermark modification
- Security
 - vulnerability to intentional attacks
 - Kerkhoffs' principle



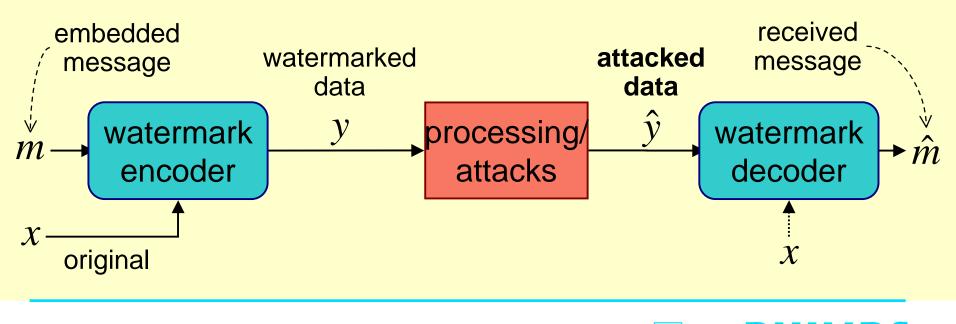
DHILI

Security

- Embedded information cannot be detected, read (interpreted), and/or modified, or deleted by unauthorized parties
- Kerckhoff's principle: Security resides in the secrecy of the key, <u>not</u> in the secrecy of the algorithm.

<u>Overview</u>

- Definition
- Why watermarking?
- Example
- Spread-Spectrum
- Matched Filtering
- Watermark parameters
- Attacks



PHILIPS

Attacks and Communications Viewpoint

- Watermarked data will likely be processed
- <u>Attack</u> any processing that may coincidentally or intentionally damage the embedded information
- Treat attacks like a communications channel

(48)

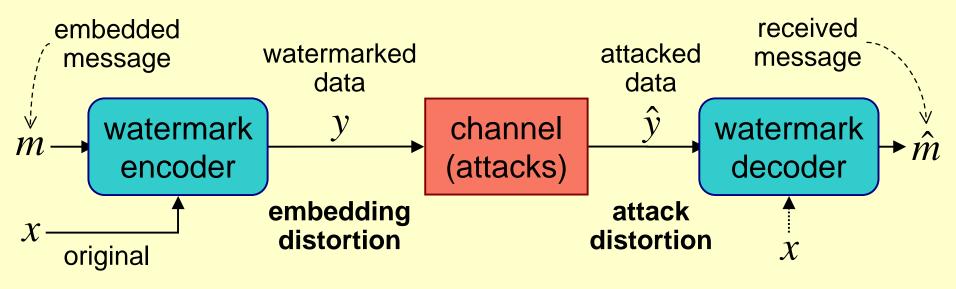
Stanford, February 2004

Evaluating Robustness

- Robustness: easy to define, hard to evaluate
 - Embedded information cannot be damaged or destroyed without making the attacked data useless
 - How to evaluate robustness in a <u>well-defined</u> sense?

"A watermark is robust if communication cannot be impaired without rendering the attacked data useless."

- Kerckhoff's principle
 - Assume opponent has complete knowledge of your strategy (algorithm and implementation) but lacks a secret (key).



Need for a Distortion Measure

- When is the attacked data useless?
- Quantify "usefulness" of attacked data
- Multimedia \rightarrow measure distortion of attacked data
 - inherently subjective, always debatable
 - imperfect but measurable

ΓU/e

Classes of Attacks

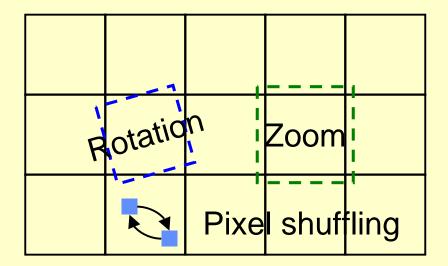
<u>Simple waveform processing</u>

- "brute-force" approach
 - impairs watermark and original data
 - compression, linear filtering, additive noise, quantization

<u>Detection-disabling methods</u>

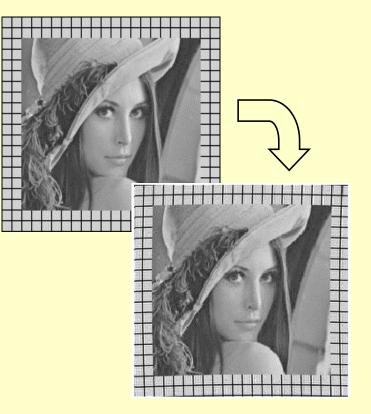
- disrupt synchronization
 - geometric transformations (RST), cropping, shear, resampling, shuffling
 - watermark harder to locate
- distortion metric not well defined
- meaning of watermark presence?
 - change of ROC curve!

- <u>Advanced jamming/removal</u>
 - intentional processing to impair/defeat watermark
 - watermark estimation, collusion (multiple copies)
- Ambiguity/deadlock issues
 - reduce confidence in watermark integrity
 - creation of fake watermark or original, estimation and copying of watermark signal


DHI

De-synchronization

- Attack
 - harder to find watermark
 - does <u>not</u> remove watermark
- How to measure distortion?
- Spread spectrum
 - fails without sync
 - re-synchronizing difficult
 - noiselike carrier
 - no peaks in frequency



PHILIPS

<u>StirMark</u>

- Popular, free WWW software
 - simulate printing and scanning
 - nonlinear geometric distortion
 + JPEG
- Easy to use and test
- Limitations
 - features available elsewhere
 - purely empirical
 - does not suggest how to improve system
 - does not use Kerckhoff's principle!
 - does not target system weaknesses
 - suboptimal attack
 - false sense of security

PHILIPS

Resynchronization Methods

- Use of templates
 - pattern of peaks in frequency domain
 - attacker can locate pattern, too!
 - pattern of local extrema
 - harder for attacker to locate or recognize
 - harder for receiver, too
 - seeking pattern is like seeking watermark signal

- Invariant representations
 - translation invariance
 - Fourier magnitude
 - rotation and scael invariance
 - log-polar mapping

 $(x,y) \! \leftrightarrow \! (\mu,\theta)$

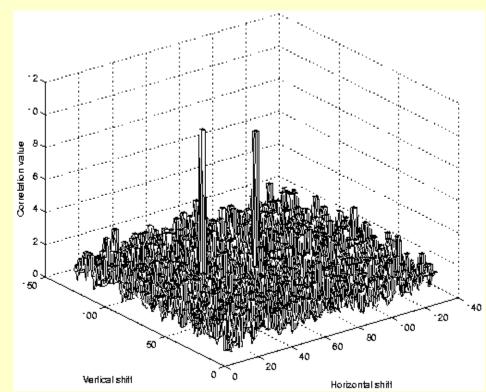
 $x = e^{\mu} \cos \theta, \, y = e^{\mu} \sin \theta$

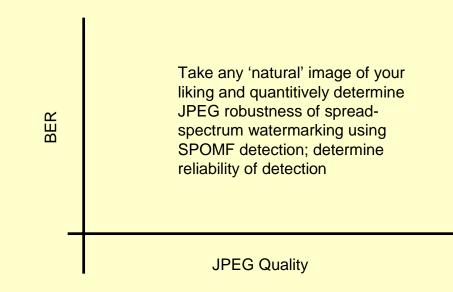
DHI

- Fourier-Mellin transform
- cannot handle aspect ratio changes, shear, etc.

- Original Marked Data
 - Y[i] = X[i] + W[i]
- Translated Data
 - Z[i] = Y[i+k]
- Detector strategy (k unknown)
 - Trial and error: correlating at shifted positions
 - $D[i] = \Sigma_I Z[i-I] W[i]$ (exhaustive search)
 - D(z) = W(z) Z(z⁻¹)
 - Efficient computation with Fourier transform!
 - $D = FFT^{-1}(FFT(W) * FFT^{*}(Z))$

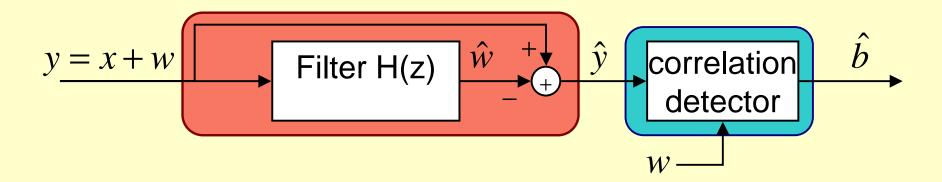
PHILIPS


- Integration with Matched Filter
 - $D = FFT^{-1}(FFT(W) * FFT^{*}(Z) * |FFT(H)|^{-2})$
 - In many cases, W and H are fixed and their Fourier transforms can be pre-computed and stored.
- Experimentally, retaining only phase information
 - Symmetrical Phase-Only Matched Filtering (SPOMF)
 - D = FFT⁻¹(Phase(FFT(W)) * Phase(FFT*(Z)))
 - Phase(a $e^{2\pi i\omega}$) = $e^{2\pi i\omega}$



- Most values D[i] correspond to nonsynchronized watermark detections!
- D(z) provides an estimate of the reliability of the watermark detection

DH



• Problem Statement: find watermark W[i] such that for given embedding distortion $N\sigma_W^2$ the detection reliability D and attack distortion D_a are maximized for any estimation filter H(z).

- Problem description in frequency domain
 - $\ H(z) : \eta_i$
 - -W(z): ω_i
 - X(z): ξ_i
- Conditions
 - $-\Sigma \omega_i^2 = N \sigma_W^2$
- Maximize
 - Attack distortion: $\Sigma (1 \eta_i)^2 \xi_i^2 + \eta_i^2 \omega_i^2$
 - Detection reliability: $(\Sigma \eta_i \omega_i^2)^2 / \Sigma \eta_i^2 \xi_i^2$

TU/e

• From detection reliability (using Lagrangian multipliers)

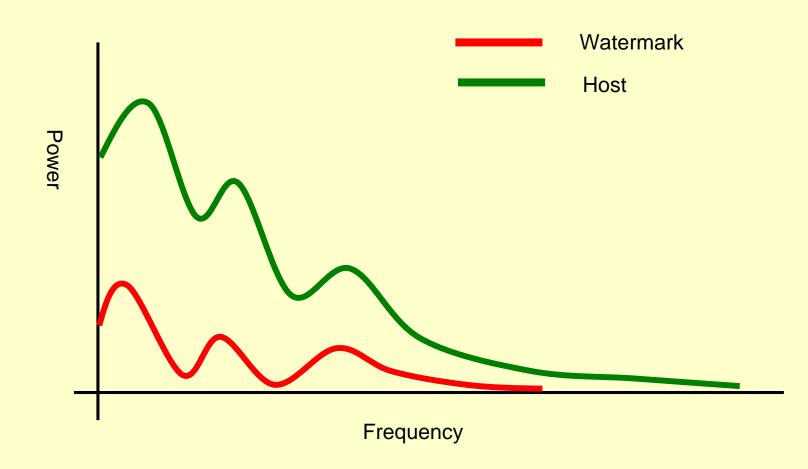
 $- \quad \eta_i = a \; \omega_i^2 \, / \, \xi_i^2$

 From attack distortion and condition (using Lagrangian multipliers)

 $- \eta_{i} = \eta = b \omega_{i}^{2} / (\xi_{i}^{2} + \omega_{i}^{2})$

• Combining we find for all frequency components

 $- \rho = \omega_i^2 / \xi_i^2$ is fixed

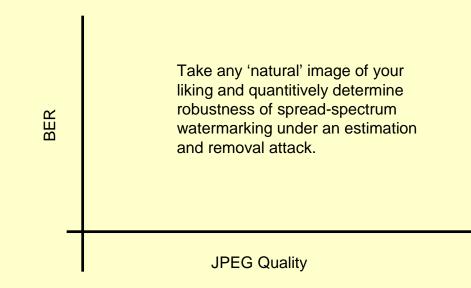

- Power Spectral Condition (PSC) of [Su, Girod]
- Theoretical justification for heuristic arguments
 - Cox et al.

DH

Power Spectral Condition

• Optimal Watermark and Attack Filter

$$- \Phi_{\rm W} = (\sigma_{\rm W}^2 / \sigma_{\rm X}^2) \Phi_{\rm X}$$


 $- H = \Phi_W / (\Phi_W + \Phi_X) = \sigma_W^2 / (\sigma_X^2 + \sigma_W^2) \text{ (scalar!)}$

- First example of game theory in watermarking
 - Embedder wants to maximize robustness
 - Tool: W(z), Cost: Embedder distortion
 - Attacker wants to minimize robustness
 - Tool: H(z), Cost: Attacker distortion

