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Many digital cameras these days include the capability to record video sequences. A
video taken standing in one place and looking around could be used to creste asingle
panoramic image. Using motion estimation to dign each frame, the overdl image can be
accumulated across the range of view covered by the video. Assuming a reasonable frame
rate and a reasonable angular speed (little or no blurring), the motion from one frame to
the next should be predictably small.

Some current methods of taking panoramic pictures are:
(1) Using avery-wide angle lens (up to 360 degrees!)
(2) Taking anumber of pictures and manudly digning & ditching them together

Method (1) can be rather expensive and not accessible to the average consumer. Method
(2) can be difficult, time- consuming, and may have problems with seams between
images due to lighting, angle, and motion.

Our method should alow a number of potentid advantages.
Cheap - Any device cgpable of generating amovie (DV camcorders and
many digita cameras) could be used.
Seamless - Combining anumber of frames for each output pixel should reduce
seam artifacts
Infinte FOV - Can aso be used smply to capture large images but scanning
across a desired scene.

Depending on time condraints, the following possible extensons offer further
advantages.

Occluson - Using mation segmentation, moving objects can be diminated.
Motion playback -  Using motion segmentation, the resulting panorama could
include moving objects.

Superresolution - Multiple overlapping images from alow-resolution video could
be combined to creste a higher resolution panorama.

Subdtituting Layers- By identifying smilar layers across frames, layers can be
extracted and replaced in avideo, dlowing, for example, the
subdtitution of the background.

The gpproach we are implementing for transforming the video sequence into a panoramic
image is based onthe work of Wang and Adelson. The dgorithm proposed by Wang and
Adelson (referred to as the WA agorithm) segments objects in a video sequence based
on motion, so that overlapping layers represent the video. Each layer contains objects
undergoing Smilar motion and a motion mode! for describing the objects through the



video sequence.  The dgorithm accumulates the layers by combining the contributions
from al video frames. These accumulated objects are exactly what is needed for
panoramic image mosaicing.  The dgorithm aso presents amethod for determining the
depth relationships of the segmented objects, so that occlusions can be dedlt with
correctly.

Although Wang and Ade son present severd uses for the agorithm, their primary
moativation for the layered representation isimproved video coding. In this report we will
focus on the gpplication of the WA agorithm to image mosaicing.  Since[1] and [2]
provide a thorough description of the dgorithm, we will give a brief overview and
elaborate on our proposed enhancements, modifications, and results.

The WA Algorithm

The god of the dgorithm is to segment the images into regions with smilar motion, and
then to describe this motion. The motion models are necessary for accurate
segmentation, while the segmented regions are required for determining the motion
model. The dgorithm uses an iterative approach to solve this chicken and egg problem.

A basic flow chart of the implementation is shown in Figure. 1.
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Figure 1. How chart of agorithm implementation. Adapted from [1].

Dense M otion Estimation

Because dl the following layers depend on and reference the origina dense motion field,
it isessentidly the “gold standard” and as such must be as accurate as possible for the
rest of the dgorithm to work. The dense mation estimation was initidly implemented
usng afull-search block-based routine. Estimating the motion on a per-pixd leve
causes this method to be unacceptably dow — on the order of two hours per image pair.
In addition, while this gpproach minimizes the M SE difference between the two frames,
it does not necessarily correspond well to the true motion between the frames,

Instead, we used phase correlation to determine the motion between pairs of frames. This
method works by taking ardatively large block of the image and computing the cross-
correlation using the Fourier transform. This identifies severd possible motions

contained within thisblock. Each pixd in the center of the block is then tested with each
of those possible motions and the motion with the minimum M SE is sdlected for that



pixel. Because the number of possble motionsissmal, generdly not more than 8 or so,
this method offers an enormous efficiency boost over the full-search approach.

Only the pixelsin a centra region of the block are assigned motion vectors to avoid noise
dueto aiasang. Thus, subsequent blocks must overlap the previous block such that the
centrd regionsfill theimage. That is, if a 16x16 region in the center of a 128x128 block
is assgned moation vectors from the larger blocks' phase correlation, then the next image
block computed would have to be shift over by only 16 pixels so that the center regions
line up.

Psaudocode for the dgorithm is as follows:

f1 = normalize( frame(i) ) Sel ect input frames

f2 = normalize( frame(i+1) )

for each block B
bl = f1(B) * wi ndow(B) Iterate over each bl ock

from each i mage

FB1L = fft2( bl) Conput e spectrum of each bl ock
FB2 = fft2( b2 )
CPS = ( FB1 * conj(FB2) ) / Comput e cross-power spectrum
abs(FBl1*conj (FB2))
PCF = ifft2( CPS) Conmput e phase correl ation
function
possi bl e_moti ons = peaks( PCF ) Sel ect possible motions
for each pixel in f2 Test each pixel against
for each possible_notion p possi bl e moti ons

conpute block match err (fl+p,f2)
select mn err(p)

b2 = f2(B) * wi ndow(B) choosi ng correspondi ng bl ocks

For amore detailed description of the theory behind the basic phase correlation
algorithm, see section 6.4.5 (pp 162 — 163) of [3]. For our agorithm, we used a block
sze of 64 and ablock shift of 16. Using the phase correation agorithm, the processing
time per frame was reduced from over two hours per frame pair (with the full search) to
under 30 seconds.

In attempting to improve the accuracy of the resulting mation fieds, we tried
implementing a number of modifications to the basc dgorithm. Frg, we normdized the
input images to a specific mean and standard deviation to compensate for brightness
variation acrossthe video. Also, we wanted the algorithm to increase the vdidity of the
estimated motion in highly textured areas of theimage. In order to accomplish this, we
derived an “amount of texture’ image to each corresponding input frame by applying a
high-pass filter to each input frame. Thisimage was used to weight the pixds of input
frame and thus weight their influence on the corrdation. Eventudly, however, the added
complexity did not produce a subgtantidly improved estimation and this modification
was dropped.



Motion Hypothesis Generation

At this stage of the agorithm we have estimated segmented regions. For the first
iteration of thefirg frame, the image isinitidly segmented into non-overlapping blocks.
For subsequent frames, the dgorithm isinitidized with the regions from the previous
frame.

For each region, the six affine motion parameters are estimated from the dense motion
vectors usng aleast- squares gpproximation.  These parameters are the average motion
hypotheses for the region layers.

Motion Hypothesis Refinement

Each motion hypothes's describes a possible motion in the image and can be thought of
asapointinagx dimensona space. K-meansdugering isused to refineinitia
hypothesesinto K representative motion hypotheses. These hypotheses will be used in
the next step of the WA dgorithm to segment the image.

The k-means clugtering agorithm beginswith K initid cluster centers that represent the
mean motion models. The cluster membership of each hypothesisis determined by
finding the nearest cluster center. Once the membership has been determined, new
cluster means are determined and the agorithm is repested until convergence.

We implemented severa modifications to the k-means dgorithm to improve the
clugtering efficiency and accuracy.

One problem isthat the value of K isnot known explicitly. Another problem is that both
empty clusters and largely varying clusters do not accurately represent motion in the
image. Therefore the agorithm must adapt to remove empty clusters and divide clusters
that aretoo large. To solve these problems empty clusters are removed during each k-
means iteration. To keep the number of means from continually getting amdler, a
minimum K vaueisinput to the dlustering dgorithm. If the number of dugtersisless
than this minimum, the dugter with the largest variance is split into two. This duster
splitting is repeated until the number of means reaches the minimum.

The cluster means from the previous k-means iteration are used to initidize the current k-
means dgorithm. For thefird iteration, the Six dimensona space covered by theinitid
motion hypotheses is divided evenly in each direction to generate initid mean guesses.

Region Segmentation
The output of the k-means dugtering isthe list of possible motion modes. The projected

coordinates of each pixd using the dense motion vectors is compared to the projected
coordinates obtained with the possble affine parameter hypotheses. The hypothesiswith



the least error is chosen as the representative modd. A layer map that describes the
motion modd membership for each pixd isthen constructed.

An error threshold has been added to this step so that pixels with large motion error are
left unclassfied. These kegps outlier pixels from affecting the average motion parameter
cdculation. Thisthreshold is determined by caculating the variance across the motion
estimates for each layer. Pixels whose estimates are more than N standard deviations
away from the mean are removed. Thisthreshold, N, can be changed for each WA
iteration so that the allowed error is reduced as the motion hypotheses improve.
Currently we are using N=1 for dl iterations.

Region Splitting

In this step disconnected regions within each layer are separated, because generdly
objects that undergo the same motion are connected. This alows for a separate motion
hypothesis for each unconnected region.  If the regions il fal in the same layer, they
will be merged in the next region segmentation step, thus restoring the cohesion between
distinct areas with amilar motions. The region splitting also produces more motion
hypotheses for the k-means, which improves the clustering results.

Region Filtering

Small regions do not provide good least squares motion estimates. Therefore, layers with
amdl regions are removed. The minimum region Size is an agorithm parameter currently
St at 256 pixels.

Region Generation

A layer map now describes the maotion regions. This map isinputted to the motion
hypothes's generator to start the next WA iteration.

Figure 2 shows two origind frames, and Figure 3 displays the region maps generated by
the algorithm at severd iteration steps.

Figure 2. Two frames from the originad sequence
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Figure 3. Generated region maps for severd iterations

TheWhole Enchilada
The previous sections describe the building blocks of the WA agorithm. Some
darification is needed on how we combine these building blocks to segment video data

For each pair of frames, the dense motion vectors are computed, the segmentations
cdculated, and the affine parameters estimated for each segment. The dense motion
vectors are cdculated once using the phase corrdation method. Determining the region
segmentation and affine parametersis an iterdtive procedure. In our implementation, five
iterations appeared to be sufficient for reasonable convergence. The number of iterations
could be set adaptively by monitoring the convergence of ether the region map or the
MSE of the motion estimates.

For thefird pair of frames, the region map isinitialized to blocks and the k means
initidized with alattice. For dl subsequent frame pairs, the previous region map and
moation estimates are used for initidization.

Layer Synthesis

Once dl the motion datafor al frames is computed, they are merged together in the
synthess sep. Because the relaionship between the layer numbersis not consstent
between frames, we chose to merge the largest layer from each frame assuming that that
will represent the background layer. Thisturned out to be an gppropriate assumption for




our input videos. We unfortunately did not have time to implement a more elegant
method of associating layers across frames.

Back- projecting each region from the second frame onto the first frame performs the
layer accumulation. This establishes a common image frame for both sets of data
Because the difference between framesis smdl, data from numerous frames will project
to the same pixe location in the common image frame. Starting with the first pair of
frames, we use the computed affine motion parameters to project the second frame onto
thefirst. For the next pair of frames, we need to compute the tota projection from the
third frame to the first frame. The accumulated projection is stored in asingle affine
transformation matrix and updated Smply by right-multiplying it by the newest
projection. The downside of this method is that smdl frame-to-frame motion estimation
errors can be accumulated over along period of time and produce noticegble aignment
artifactsin the final image. In order to reduce noise, preserve edges, and help remove
motion artifacts, atempora median filter is gpplied to the fina accumulated image. That
is, eech pixd in the find image isthe median of al the vaues covering thet pixd from
each frame.

Results
The basic panoramic functiondity of our implementation is shown in Figures4and 5. A
verticd panoramais aso shown in Figure 6.

Figure 5. The synthesized background image from the panning video.



Figure 6. A panorama created from avertica video pan.

Our implementation aso removes moving objects from agiven scene. Thisisfirs
demondtrated by a video sequence that remains till but contains a couple walking from
left to right across the scene. Figure 7(a) shows an origina frame from the video
sequence and 7(b) shows the segmented background region for that frame. Figure 8
shows the resulting background panorama.

Figure 7(a) on the left shows the origind video frame and
7(b) on theright shows the segmented background.



Figure 8. The resulting synthesized frame without foreground objects.

Figures 9 and 10 show another example of removing amoving object during a camera
pan. Figures9 (a) and (b) are two frames from the origina video sequence with acyclis.
Notice how he is removed in the resulting panorama.

Figure 10. The rIi ng panorama without cydli<.



Conclusions

Overdl, the dgorithm accumulates the background well, forming nice panoramic images.
Moving objects in the video sequence are neatly removed from the panoramic image.
While the dgorithm performs well, the numerous agorithm parameters could be refined
further for future improvements.

One possible improvement isto include the color information in the dense motion
edimation. While thiswould triple the computationd cogt, the importance of this stage
may judify the increased complexity if the dense motion estimation is significantly
improved.

Improved methods for finding the corresponding layers across frames, would alow more
flexibility in processng the results of our implementation. For example, moving objects
could be extracted separately or replaced. The regigtration of layers between two frames
could be performed manudly, or by finding the maximum cross correlation between the
layer combinations.
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Work Division

While the overwhelming mgority of the work on this project was performed working
together, each of us was responsgible for primarily for some parts of the code. The phase
correlation and synthes's code was Augusto’ s while the region segmentation and motion
parameter estimation code was Taly's.




