EE392j Project Report

Segmentation of Vehicles in Traffic Video

Tun-Yu Chiang, Wilson Lau
Stanford University
Email: {tchiang, wslau} @stanford.edu

Abstract— Segmentation of moving objects in a scene
is often desired in applications such as video surveillance,
where our interest is in monitoring for example, cars and
people. In the project, we look at traffic videos and inves-
tigate two approaches that can be used to segment vehicles
from the background. From the results, we explored the
pros and cons of each method.

Our work is separated as the following: Tun-Yu Chiang
worked on the background mixture model segmentation,
and Wilson Lau worked on the motion based segmentation.

I. INTRODUCTION

Closed-Circuit Television Cameras are becoming in-
creasingly common on freeways. Used for traffic manage-
ment, the cameras allow operators to monitor traffic con-
ditions visually. The large number of cameras make it im-
practical for each to be monitored at all times by an opera-
tor, and as such the videos are usually only monitored after
an event of interest (e.g. an accident) has been known to oc-
cur within a particular camera’s field of view.

With suitable processing and analysis it is possible to ex-
tract a lot of useful information on traffic from the videos,
e.g. the number, type, and speed of vehicles using the road.
In order to do this, one might try to segment the video into
foreground objects of interest (the vehicles) and the back-
ground (road, trees). Segmenting the video into foreground
and background can also reduce the data rate required to
transmit live video as it may not be necessary to transmit
the background as frequently as the foreground vehicles.

In the project, we investigate methods that can be used
to extract moving vehicles from the background in such
videos.

II. METHOD

We used a Sony Digital 8 DCR-TRV320 camcorder to
shoot our own test sequences of traffic scenes. To simplify
the task of motion segmentation, the shot angle was care-
fully chosen to minimize perspective distortions. The video
sequences were downloaded to a computer using an IEEE-
1394 cable. From the raw footage clips of interest (approx-
imately 5 s or 150 frames @30 fps) were edited out. The lo-
cation shown in the video is around the intersection of Page
Mill Road and I-280, Palo Alto, CA.

We implemented two algorithms based on two completely
different approaches to the problem. The first attempts to

adaptively model each pixel as a statistical process and iden-
tify foreground objects by deviations from the usual param-
eters. The other tries to segment out the vehicles in the
scene by grouping together regions undergoing a coherent
motion.

We will describe each algorithm in detail and show the
corresponding results for each in this report.

III. ADAPTIVE BACKGROUND MIXTURE MODEL
BASED SEGMENTATION

In the possible applications of vehicle extraction, such as
traffic surveillance, real-time processing is often desired due
to the amount of accumulating video data. From the liter-
atures reviewed, the adaptive background mixture model
matching method is a robust and also computationally in-
expensive approach.

In this part of our experiment we implemented the back-
ground mixture model algorithms proposed by Stauffer [7]
and Harville [S]. Our goal is to apply the mixture model
to the simple traffic sequences with translational motion,
and hope we can learn how different parameters affect the
segmentation results qualitatively. One particular problem
that arose from the experiment is then global motion pro-
duced by the hand-held camera. The global motion causes
several obviously visible artifacts in the segmentation re-
sults. In the previous works this problem does not exist
simply because in the surveillance context the video source
is usually a fixed camera. To estimate and compensate the
global motion, we tried a simple phase correlation motion
estimation, which helped to eliminated some of the artifacts.
We will discuss the experiments and results in the second
part of this section.

A. The Method

This algorithm models a specific pixel value as a mix-
ture of weighted K 3-D Gaussian distributions in the color
space:

Xr,t
Xgt
Xt

pixel value X, =

K

probability P(X¢) = Z wi ¢ % ;.1 (Xes Mgy Dit)
i=1

The method is equivalently a on-line K-means clustering
of the new observations. The adaptive method guarantees
the background model is built with the recent history of ob-
servations. In each time step ¢, we try to match the new
pixel observation X; ; with the K distributions in the mix-
ture model. If we find a match, the weightings w; and also
the mean /i and variance o7 of the match distribution is
updated accordingly. If no match was found, we replace
the the least-weighted distribution in the mixture with the
new observation. In this phase it is important to specify the
matching criterion and also the adaptive learning rate « in
the process. We will discuss them in detail later.

For the background segmentation, after adapting the
model with the observation, we sort the distributions ac-
cording to the values wy/o;. The w/o value increases as
the weight increases (more observation is matched to this
distribution) and as the variance decreases(the distribution
is more stable). The value is thus a good index to distinguish
the background values from the K distributions. Also, we
will assume that during the whole process, the pixel repre-
sents the background for T portion of the time. We pick
the first B distributions from the sorting according to the
following criterion:

b
B = argmbm <Z wy > T)

k=1

For the foreground extraction, we classify the new obser-
vation as foreground if either (i) no match is found or (ii) the
matched distribution does not belong to the B background
distributions. In these cases, after replace the least possible
distribution with the new observation, we take weighted av-
erage of the remaining 7'— B distributions as the foreground
value.

B. Implementation

To simplify the model, Both Stauffer [7] and Harville [5]
assume that each of the K 3-D Gaussian distributions at
time step ¢ is of the form:

Mt = N (s X)

Hort
Kg,t
Mot

2
Mkt = 7EK,t:U I

Note that the above assumption of the 1-D distributions
being independent with same variance values is appropri-
ate depending on the color space chosen. However in our
experiment we only worked in the RGB space, further ex-
ploration of the difference caused by the color spaces is not
included in this discussion.

1) The matching criterion: The two key parts of the
algorithm are the matching criterion and the adpative pro-
cess. For the matching criterion, both [7] and [5] suggest
that we compare the newly observed pixel value with the
mean /i, of the kth distribution. If the observation is within
QBo from the mean 1, we declare a match found. There are

two ways to compare the ‘distance’ from the observation to
the mean vector with the 5o bound the 3-D space: (i) com-
pare the Gaussian probaility value [7] (note: the definition
of 3 in the two formulas are different):

A match is found with 7, when:

P(X¢) > P(uke + Bo)

(ii)calculate the Euclidean distance [5]):
A match is found with ., when:

(X¢ — pixt)? > Boi

At a preliminary stage of the experiment, we imple-
mented both (i) and (ii) in MATLAB. We found that
qualatatively the results does are not very different from
each other, whereas there is an obvious efficiency gap !. Pro-
filing results showed the bottleneck was the Gaussian prob-
ability calculation. The efficiency issue is important to the
experment because this adaptive method takes several it-
erations (depending on the parameter chosen, usually 15-
20 from our observation)to establish a stable background
model. This is the major reason we chose to closely follow
the formulae from [5] instead of from [7].

2) The adaptive process: In each time step, we need to
update the weights w;,’s, the means i;’s, and the variances
o1’s according to the matching result. The update formu-
lae proposed by [7] are based on the learning rate o and
also the the gaussian probability value. As mentioned be-
fore, the computations for Gaussian probability slows down
the processing speed to an unacceptable level. So we used
the updating formulae listed below, which is an simplified
version of those in [5] 2.

If the a match is found with the mth distribution, the
mean and variance are updated with:

pmgt1 = (1 =) pimt +a - X
Omit+1 = (1 —a)om s + a(Xg — Mm,t)T(Xt — fimt)

The weights of all n);,’s are updated with:
wi = (1 — @)wy, + aMj,

_J1 match found,
B 0 otherwise.

The weights are re-normalized after the update.

In addition, in order to improve the program efficiency
we also incorporated a thresholding method. The idea of is
simply that if a pixel value did not change over a compara-
tively long time period, we should consider it as static. So we
compare the current frame with a previous reference frame
20 time steps ahead. We then threshold on the difference
values. If the similarity of the pixels is above the threshold
we would directly conclude the current pixel as part of the

f use gaussian probability in the matching and updating functions,
it took 380 to 1300sec. to process a frame. If simply alpha is used, it
took only about 38sec. on average

2They used a scene activity measure to modulate v in each step

background and skip the adpative process. This threshold-
ing is applied before the Gaussian mixture process in each
iteration. Since the scheme is more or less adhoc, we tried
several different threshold values trying to find the most
appropriate. The results show that the values does affects
the quality of the output in the sense that the background
model will be established more slowly when the threshold
is low. This is because in that case, fewer gaussian mix-
ture processing would be performed. Based on the trial-
and-erorr’s we fixed the threshold value of the minimum
difference between the current and the reference frame to
minDif f = 20.

C. Experiments and results

Throughout the experiment we fixed parameters 5 = 2.5
as suggested in [7] and the threshold value min Diff = 20
as mentioned above. To further simplifiy matters we only
chose The distribution with the highest weight w/c as the
background pixel value, instead of using the 7" criterion be-
fore mentioned. In the experiment the variables are param-
eters o and K.

We tested the algorithms on three 5-seccond long video
sequces with temporal sampling rate 15 frames/sec. The al-
gorithm worked for all three sequecnes. Each of the seg-
mented sequences shows some specific characteristics of the
model, details are explained in fig.1, fig.2 and fig3. In gen-
eral, the vehicles would disappear within 15-20 time steps
(and equivalently in the foreground the vehicle would ap-
pear without significantly visible holes). In this section we
will focus on some of the artifacts we observed in the seg-
mentation results. We will discuss the possible causes of
these artifacts, and also how to compensate them.

1) residue in the segmented background and the learn-
ing rate: We observed residues of the vehicles the bakc-
ground segmentations. The time for the residues to disap-
pear is related to the learning rate «. In other words, the
faster the model is adapted to the newly observed vehicle
value, the more residue we would see in the background, be-
cause the interior pixel values of the vehicles are accepted as
a higly weighted memeber of the K gaussian mixtures. The
resutls from different o values are shown in fig.4.

2) blurring of the background: We observed that when
there is apparent camera motion between two time steps,
the extracted background will become blurred after in sev-
eral following time steps. The reason of this artifact is that
the background model was built before the camera motion
took place, and so the new observations contains a spatially
shifted version of the background. The particular Gaussain
mixture algorithm applied here is literally producing an av-
erage from the background model and the new observation.
Therefore in the presence of global motion between consec-
utive observations the ouput is a spatially averaged version
of the original and shifted background.

Theoretically, the blurring artifact could be eliminated
with global motion compensation. However, as we can see
later in the report that it is difficult to achieve the global
motion compensation with enough subpixel precision. Even

Fig. 4. Background of frame 38 from Pagemill0I. Top: o = 0.05,
bottom: o = 0.95.

after motion compensation, the blurring effect is still visible
in the regions with many details, such as the trees and the
lawn in our example.

The other easier way to improve the sharpness is simply
to increase K, the number of possible distributions in the
mixture. This is by the assumption that the global motion
from the hand-held camera is randowm and small in value.
By increasing K we can include more of the possible neigh-
borhood values in the distribution mixture, and thus build
a better model.

In the experiment sequence pagemill0l.avi, there are
some pronounced horizontal global motion around the
100th frame. fig.5 includes pictures of the extracted bac-
ground with o = 0.05 and K = 3,4,5. We can see the
sharpness of the tree region increases with K.

3) Vertical and horizontal global motion: The global
motion is readily observable from both the background and
the foreground sequences. Two particularly good examples
are the disppearing and reappearing of the electrial pole
in the background, and the existence of the lane marks in
the foreground. From the pagemill01 sequence we can see
that the electrical pole would partially disappear and reap-
pear. This is caused by the comparatively rigorous horizon-
tal global motion between those frames.

The other more apparent example are the horizontal-line
shaped lane marks. We expect these marks to be part of
the background. But it was nearly absent (only small parts
appeared) in the background and always present in the fore-
ground. This is because it is actually ‘moving’ if we don’t
compensate the globale motion. We can see the vertical mo-
tions from one of the ’lane mark traces” over time in fig.6.

Fig. 1. Segmentation of pagemillOl.avi. Left to right: frames 2, 26,52,78,104. Top to bottom: Original, Background, Foreground. Note that in
the the last 3 frames of the background the electrical pole starts to disappear. Also, the trees are blurred in the background.

Fig. 2. Segmentation of pagemill02.avi. Left to right: frames 2, 26,52,78,104. Top to bottom: Original, Background, Foreground. Note that
the background sequence has less residue comparing to that of PagemillO1. The starting frames of the sequence does not contain vehicles, so the

background model became stable more quickly.

The situation here is similar to a rotating fan. However,
with the omnipresent, jittering global motion, the Gaussian
mixture model failed to segment these details. This is be-
cause (i)the contrast between the mark and the road is large
(ii) this global motion is repetitive and small. We tested this
phenomenon by applying the algorithm on a synthetic se-
quence with a red box on top of a black background. The
box moves vertically with £1 pixel from frame to frame.
The result showed that the part of the box is always existing
in the foreground.

When we check the mean values of the K distributions in
the model for pixels near the box region, we found that it is
composed of interleaving extreme values. Because of the na-
ture of the synthetic motion, at regions near the top and bot-
tom of the box the new observation will match one of the dis-
tributions, but never the most possible (highest w /o) in the
background model. According to the algorithm, the rest of

the distributions are averaged to represent the foreground,
so it would always present in the extracted foreground se-
quence. In the case of the pagemill01 sequence, around one
of the lanemarks the mixture model contains distributions
of interleaving mean values with differences of about 100,
which coincides the above explanation.

To eliminate the artifacts produced by the global motion,
we performed a simple motion compensation method to be
discussed in the next section.

D. Global Motion Compensation

1) Global motion estimation using phase correlation
method: The motion estimation method used here is phase
correlation estimation. The basic idea of this block-based
estimation is to extract the motion vector from the change
of phase in the frequency domain. Assume that two blocks

Fig. 3. Segmentation of freeway.avi. Left to right: frames 2, 26,52,78,104. Top to bottom: Original, Background, Foreground. This sequence
has less global motion, so the extracted foreground appear to be clearner than those of the previous sequences.

are related by purely a translation d):
P1(x) = Y2(x+d)
\I’l(f) — \Ilz(f) . ej27rde

The normalized cross-power spectrum between the
blocks can be calculated as:

J(f) = M _ pi2md’f
YO = 10w 0]

After the Fourier inversion we obtain the phase correla-
tion function(PCF):

PCF(x) = F~HU(f)) = 6(x + d)

The normalized correlation is used to compensate for the
possible change in luminance and the noise. The algorithm
simply picks the peak from the PCF as the 2-D translational
motion vectors.

We chose phase correlation estimation because it is fast
comparing to the block-matching estimation. The efficiency
is desirable for the real-time application context. In our
experiment we used four 32232 windows near the corners
from each frame (using the Y values only), and the average
of the motion vector obtained from the four blocks would
be our esitmate. In order to get subpixel precision, we zero-
padded the spectrum to 64:64 before the inverse FFT. For
the pagemill01 sequence the resulting estimated global mo-
tion vectors are shown in fig.8.

2) Experiments and Results: After obtaining the mo-
tion vectors we tried to align the frames with the first
frame. We generated a series of 3402160 frames (originally
3602180) frames from the original sequence according to

the motion vectors. Because the global motion vectors esti-
mated have subpixel precision, we used interp2 in MAT-
LAB to generate the compensated frames. We then input
the compensated sequence to the segmentation algorithm
we developed in the previous parts. The results are shown
together with the non-compensated results in fig. 9.

We observed from this segmentation that some obvious
global-motion related problems are eliminated, for example
the eletrical pole is now always present in the background.
Also, the blurring of the background is less obvious, and the
foreground is cleaner. However, the artifacts did not com-
pletely go away; we can still see the lane marks from the
foreground segmentation. Moreover, from the segmented
background we can see the model converges slower than
the non-compensated case. We suspect the non-ideal result
comes from the lack of accuracy in the motion estimation
phase, and also the interpolation in the motion compensa-
tion phase.

E. Future Improvements

We can try to apply some filtering technique on the phase
correlation estimation, since it nees a big enough block size
yet also should be able to capture the details. Also, we can
use pixel-based methods such as optical flow estimation to
get more accurate global motion vectors before the compen-
sation.

IV. MOTION-BASED SEGMENTATION

Objects moving in a 3D scene are projected onto the im-
age plane as regions undergoing motion. Depending on the
geometry of the camera with respect to the scene, this mo-
tion can be described by a parametric motion model. The

Fig. 9.

Segmentation of pagemillOl.avi. Left to right: frames 2, 26,52,78,104. Top to bottom: Original, Background (without motion

compensation), Background(with compensation), Foreground(with compensation). With compensation, the electrical pole constantly appear in

the backgrond, and the foreground is cleaner than before compensation.

idea of motion-based segmentation is to extract the moving
objects by identifying these regions of coherent motion.

Our approach consists of first estimating the optical flow
for every pixel in the image. We then attempt to group these
pixels into regions by performing clustering in the motion
parameter space. In our case a translational motion model
is sufficient to describe the motions present in the image and
we can directly use the optic flow estimates as our motion
parameters. For more complex models an additional step is
required to estimate the motion parameters from the optic
flow estimates, and it may be necessary to iterate between
the motion parameter and region estimation to find the so-
lution.

We have thus broken down the motion segmentation
problem into two sub-problems: (i) optic flow estimation,
and (ii) clustering of motion parameters.

A. Optic Flow Estimation

We estimate the motion vectors (v, v,) at each pixel lo-
cation by solving the Optical Flow Equation (OFE):

Iove +Tyvy +1; =0

where I, I, and I; are the spatial-temporal derivatives of
intensities we can compute for each frame in the image se-
quence.

The OFE is under-constrained (1 equation with 2 un-
knowns), but we can solve it by imposing additional con-
straints, for example by assuming neighbouring pixels have
the same motion. We used a 5 x 5 window, and use least-
squares to solve for the motion vectors:

HEEE IR

where the summation is taken over a 5x5 pixel Gaussian
window with ¢ of 1 pixel. Summing over a Gaussian win-
dow gives more weight to the center pixels and less to those
at the peripheral, and the result is a weighted least squares
solution [8].

The validity of the OFE rests upon two assumptions:
constant intensity along motion trajectory and ‘small’ mo-
tion (where ‘small’ in practice means ~1 pixel/frame). The
small motion assumption is often violated — for example,
in the video sequences we used, even the slower moving cars
had velocities of 3-4 pixels/frame. This leads us to a multi-
resolution or hierarchical approach.

In a hierarchical framework, we first generate a Gaus-
sian pyramid of images by iteratively filtering and sub-
sampling by a factor of 2. We used a 5-by-5 separable filter
(or generating kernel) defined by

w(m,n) = w(m)w(n)

with
w(0) = a
w(-1)=w(l) = 1/4
w(—2) = (2 1/4—a/2

where a is set to 0.6 as suggested by Burt [3].

At each level of the pyramid, starting from the highest
(lowest resolution) we

(i) project and interpolate estimates from previous level
(i) pre-warp the neighbourhood window according to
the motion estimates computed from the previous
level before performing least squares. In our imple-
mentation, we assume the entire window has the same

Fig. 5. Background of frame 100 from Pagemill0l.K = 3,4,5 The
sharpness of the tree area increases with K.

oy

o i el """F"i'fn'p'“"

W L —
o ! '-I'
| |"|| | i i
I I it in I 1 w " oo

50 100 150 200 250 300 350 400

Fig. 6. ‘Trace’ of the one lane mark with time Top: frames 1 to 40,
middle: frames 41 to 80, bottom: frames 81 to 120.

Fig. 7. Top: orignal frames of synthetic sequence. Bottom: extracted
foreground of synthetic sequence.

motion estimate as the center pixel, and simply shift
the entire window by the nearest integer number of
pixels to reduce the interpolation operations required.
The spatial and temporal derivatives are then calcu-
lated on the shifted window.

the least squares solution is added to the initial esti-
mates to give give a refined estimate for that level.

(iii)

In this fashion as we descend the pyramid, our motion

0 l:m vvvvvvv T CHIIDX
-0.2 .
—0.4 1 1 1 1

0 20 40 60 80 100 120 140 160

_0-60 2‘0 4‘0 6;0 8‘0 1(;0 12‘0 1“&0 160
frame

Fig. 8. Estimated global motion vectors. Top: horizontal, bottom:

vertical

vector estimates become more and more accurate. The ini-
tial estimates at the highest level are set to zero.

At each level, the algorithm only computes the optic flow
for rectangular areas where the motions exceed a certain
threshold. The threshold was set to 2 pixels/frame at the
highest resolution level, corresponding to a threshold 1 and
0.5 pixels/frame at levels 1 and 2 respectively. This thresh-
old value is not sensitive as long as the vehicle motions are
significantly larger than the global motion caused by the
camera. For our video sequences where the moving vehi-
cles only occupy a small area we were able to significantly
reduce the computational load by this method.

The number of levels used in the pyramid determines the
largest motion that we can resolve accurately by solving the
OFE. We used a 3-level pyramid, and assuming the OFE
is applicable for motions up to 1.5 pixels/frame, the largest
motion that can be validly computed is 6 pixels/frame. For
our application here this is adequate but we note that the
range can easily be doubled by adding another level.

1) Computational issues: The importance of numeri-
cal differentiation and spatiotemporal smoothing was em-
phasized by Barron [1], and our experiences corroborates
this observation. In particular we found that temporal
smoothing improved the robustness of the direction of the
velocity estimates at the cost of the magnitude. To compute
the spatial derivatives, we used a 3-point central difference
(filter coefficients [—0.5,0,0.5]) computed on the average of
the two frames.

2) Error propagation: With a multi-resolution ap-
proach, errors in the velocity estimates in the higher lev-
els will propagate to a larger and larger spatial area as we
descend the pyramid. The sub-sampling performed also
means that the magnitude of error is doubled as it is pro-
jected and interpolated to the next level. It is therefore cru-
cial that the estimates in the higher levels be accurate, or
it will be impossible for the lower levels to recover from
such an error. In our implementation, at the lowest reso-

lution level, we used a Gaussian filter with a relatively large
o of 1.5 frame periods (requiring a support of 15 frames)
to pre-smooth the image pairs before taking the temporal
derivative (frame difference). As we descend the pyramid,
we gradually reduce o to 1.0 and finally 0.5 at the original
resolution to reduce the amount of blurring caused at the
higher resolutions. We stress here the importance of tempo-
ral pre-smoothing, without which the least squares solution
gives almost random results.

3) Edge effects: Using a 5x5 neighbourhood window,
we are unable to calculate velocity estimates for a border
region 2 pixels wide without assuming the values outside
the boundary given for the image. With a 3-level pyramid,
the 2 pixel border at level 2 projects to an 8 pixel border
region with no velocity estimates (and hence no segmenta-
tion). In our case we have a reasonably large frame size and
can afford to lose nearly 10 pixels at each side. However for
smaller video sizes this could be a concern and more elabo-
rate schemes for dealing with edges may have to be consid-
ered especially if a multi-resolution approach is to be used.

4) Confidence measure of estimates: We determine
whether to accept or reject the weighted LS solution by sim-
ple thresholding. If either the = or y component of the veloc-
ity exceeds 1.5, the small motion assumption of the optical
flow equation is violated. The LS solution is discarded but
we retain the initial estimates from the higher level for that
pixel.

50
100

150 =

150 200

(a) original image

20f
401
60
8Of -
100F
120
1401
160

50 100 150 200 250 300

(b) estimated optical flow

Fig. 10. Optical flow estimation (frame 39, pagemill001.avi)

B. Clustering of motion parameters

Object motion in the image sequences used can be mod-
elled by a translational motion model, and thus we are able
to use the optic flow estimates v, and v, directly as our mo-
tion parameters. We used k-means clustering with &k = 5,
with a feature vector

X = [vx,vy,i,j,R,G,B]'

where ¢, j are the pixel locations to add spatial information
to the vector, and R, G, B are the intensities of the color
components at that point. The distance between two fea-
ture vectors was measured using a Mahalanobis distance,
defined by
d(X17X2) = (Xl — Xz)E(Xl — Xz)T

where ¥ = diag(1,1,1,1,2,2,2). The purpose of the matrix
Y is to weight the the color intensities since they are of a
different scale (and units) from the other 4 components in
the feature vector After some trial-and-error we found 2 to
give good results.

The clustering algorithm is implemented as follows:

(i) threshold magnitude of velocity to determine approx-
imately the regions of interest (vehicle locations). The
threshold was set to 2 (pixels/frame).

(i) perform k-means clustering on the entire region ex-
tracted in (1).
for each region segmented by k-means clustering,
further segment by connectivity and remove uncon-
nected regions with size less than a threshold size, set
to 200 pixels.

(iii)

C. Results

1) Optic flow estimation: The accuracy of the optic
flow estimation has a significant impact on the quality of
the eventual segmentation. Figure 11 shows a typical result
of the optic flow estimation algorithm. In the frame, the car
is moving towards the right.

We can see that the horizontal motion vectors are not
confined to the car but leaks out considerably into the neigh-
bouring ‘road’ pixels. This is a consequence of the method
we used — by performing a least-squares fit over a 5x5
neighbourhood window, we are implicity smoothing the mo-
tion across motion boundaries. The multi-resolution ap-
proach further exacerbates this problem as every motion
vector found at the n-th level in the pyramid eventually
projects onto an area of 2" x 2" pixels at the original res-
olution. The increased leakage of motion vectors along the
trajectory of the car is due to temporal pre-smoothing. Low
pass filtering in time reduces the sensitivity of our optic flow
estimates to noise. We experimented with several different
values of the o used in the Gaussian temporal filter at the
lowest resolution image, and found that 0 = 1.5, as sug-
gested by Barron [1] offers a good trade-off between robust-
ness and resolution.

Our implementation also leads to numerous invalid mo-
tion vectors near motion boundaries: e.g. the edges of the

cars. Various methods have been proposed to identify these
invalid estimates, for example by examining the eigenvalues
of the A-matrix in the LS formulation [1] — the larger the
minimum eigenvalue, the more confidence we should have
in the estimate. We investigated this approach but perplex-
ingly the motion estimates for the interior pixels of cars at
the lowest level turned out consistently to be very unreliable
according to this criterion. We conjecture that the car inte-
rior may have insufficient texture at the highest resolution
images for the least squares solution to be well-conditioned
In our particular case where a translational model is used,
these randomly pointing vectors near the object edge may
actually work to our favor making the clustering procedure
easier. However in the more general case where we have to
iteratively estimate the motion model parameters and the
motion region these invalid motion vectors may be a more
serious problem.

2) Segmentation results: Initially we used a feature
vector containing only the 2 components of the translational
velocity and the pixel locations. Figure 12 shows the result
of segmentation in this 4-space. As expected from our previ-
ous discussion of the smoothing effects of our optical flow es-
timates, the segmented car includes a considerable amount
of road pixels, in particular along the direction of motion.

To improve the segmentation R,G,B color intensities were
added to the feature vector With this extension we were able
to get much ‘cleaner’ segmentations. For comparison, fig-
ure 13 shows the results of segmenting the same frame in fig-
ure 12 but with the new color information added included.
There are some undesirable effects, such as the windows be-
ing segmented off because of the high contrast between it
and the the white car body. Particularly good results were
obtained for vehicles with colors having high contrast with

P e i J

60 :
80 100 120 140

10
20
40 |
50 ':.':A
60 =

Fig. 11.
pagemill002.avi)

Optical

flow estimated around car (frame 60,

Fig. 12. Segmentation without color information (frame 92,
pagemill002.avi)

(a) original image (segmented regions in color)

(b) segmentation map

Fig. 13. Segmentation with color information (frame 92,
pagemill002.avi)

the road (figure 14). Nevertheless, having an accurate optic
flow estimate remains the key to a good segmentation.

As currently implemented in Matlab, our algorithm
can process a frame of 180x360 pixels in approximately a
minute. About two-thirds of the processing time is taken
up by optic flow estimation. Further work will investigate
methods to identify and track the cars in the regions seg-
mented.

V. CONCLUSIONS

From the two different methods implemented in the
project, we would like to make the following comments:

50

100

150

50 100 150 200 250 300 350

(a) original image (segmented regions in color)

50

100

150

50 100

150 200 250 300 350

(b) segmentation map

Fig. 14. Segmentation results (frame 26, pagemill001.avi)

(i) Adaptive filtering method such as the background
mixture model is easy to implement, and can give sub-
optimal segmentation results. The basic idea of the
method is simple: properly take data from the cur-
rent input and place it either in the background or the
foreground. So the results is always not too far away
from what is expected. The key is to understand how
different parameters affects the different artifacts in
the segmentation, and also to understand in what sit-
uation the method would fail.

(i) Accurate sub-pixel levelmotion estimation is difficult
to achieve and also difficult to evaluate. This is clearly
exemplfied in the amount of efforts we spent on the
dense field optical flow estimation. However, accurate
motion estimation is important not only for motion-
based segmentation, but also for compensating the
non-ideal camera motion. Also, only with motion es-
timation we are able to extract informations such as
car speed. It is the most important but difficult stage
for motion-based processing.

Comparing the two methods we would say that they are
suitable for different purposes. Although easy to imple-
ment, the background mixture model can gave us only the
segmentation. The motion-based method allows more pos-
sible applications, such as measuring car speed or 1 ayered
processing, it is on the other hand harder to implement.

As the project was originally aimed at separating layers
from the traffic video sequence, we hoped that we could
somehow combine the efforts of the two widely different

methods to achieve the goal. Although it turned out in the
given time we were unable to reach the stage of integrat-
ing the efforts, through the discussions in our individual
problem-solving process, we both learned a lot from each
other.

REFERENCES

[1] J.L. Barron, D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt.
Performance of optical flow techniques. CVPR, 92:236-242,
1992.

[2] S.S.Beauchemin and J. L. Barron. The computation of optical
flow. ACM Computing Surveys, 27(3):433-467, 1995.

[3] Peter J. Burt and Edward H. Adelson. The laplacian pyramid
as a compact image code. IEEE Transactions on Communica-
tions, COM-31,4:532-540, 1983.

[4] F. Dufaux, F. Moscheni, and A. Lippman. Spatio-temporal
segmentation based on motion and static segmentation, 1995.

[5] M. Harville, G. Gordon, and J. Woodfill. Foreground segmen-
tation using adaptive mixture models in color and depth. In
Proceedings of the IEEE Workshop on Detection and Recogni-
tion of Events in Video, 2001.

[6] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Computing Surveys (CSUR), 31(3):264-323, 1999.

[7] C. Stauffer and W. Grimson. Adaptive background mixture
models for real-time tracking. In Proc. CVPR, pages 246-252,
1999.

[8] J. Wang and E. Adelson. Spatio-temporal segmentation of
video data, 1994.

[9] Y. Wang, J. Ostermann, and Y.Q. Zhang. Video Processing and
Communications. Prentice Hall, 2002.

APPENDIX
Matlab code: Adaptive background mixture model segmentation

Main code for Adaptive Gaussian Mixture Model Segmentation

written by Tun-Yu Chiang, last modified date: 03/12/2002

Y =——=—=—=—==—=—=—=—=—=—==—==—==—==—==—=—=—=—=—=—=—=—==—==—=—=—=—=—=—=—=—==—==—==—=—=—==—==========

o
5
)
5
)
5
)

Notes:
1. Input/output data are tiff files
2. Outputs both foreground and background sequences

o° o° o° o° o° o o° o

clear all;
close all;

filename='newPM’ ;

totalframe=60;

tempframe= imread([filename ‘001.tif’],’'tif’);

height=size (tempframe, 1) ;

width=size (tempframe, 2) ;

frames=zeros (size (tempframe, 1), size (tempframe,2),3,totalframe) ;
for i=1l:totalframe

j=2%*1i;
if (j<10)
name = [filename ’00’ int2str(j) ’'.tif’];
elseif (j>=10 & j<100)
name = [filename ‘0’ int2str(j) ’.tif’];
else
name = [filename int2str(j) '.tif’];
end;
frames(:,:,:,1i+1)=imread (name, 'tif’);
end;

$setup parameters: K= #o0of guassians in the mixture
% alpha = learning constant

% T = min. portion of background

% 1nitVar = initial variance

% minDiff = min. pixel value diff for thresholding
K=5;

alpha=0.05;

T=0.6;

initvVar=125;

minDiff=30;

$setup matrices
Bframe=zeros (height,width, 3) ;
Fframe=zeros (height,width, 3) ;

frameNow=zeros (height,width, 3) ;
framePrev=zeros (height,width, 3) ;
frameDiff=zeros (height,width, 3) ;

map=ones (height,width) ;
pixel=zeros(3,1);
miu=zeros(3,1,K);
sigma=ones(1,K) ;
weight=zeros(1,K) ;
bgweight=zeros (1,K) ;

$setup parameters for the guassian mixture model:
w=ones (height,width, K) /X;

Gmiu=zeros (height,width, 3,K) ;

Gsigma=ones (height,width, K) ;

$initialize g-mixture model
Gsigma = Gsigma*initVar;

for k=1:K
Gmiu(:,:,1,k)=tempframe(:,:,1);
Gmiu(:,:,2,k)=tempframe(:,:,2);
Gmiu(:,:,3,k)=tempframe(:,:,3);
end;

%adaptive g-mixture background segmentation

for frnum=2:totalframe
%¥get current frame and the refernece frame

frameNow=frames (:, :, :, frnum) ;

if (frnum<=20)
tempframe=frames(:,:,:,1);

else
tempframe=frames(:, :,:, frnum-20) ;

end;

$thresholding to get the map for pixels to perform the process

frameDiff (:,:,1)=abs (frameNow(:,:,1)-tempframe(:,:,1));
frameDiff (:,:,2)=abs (frameNow(:,:,2)-tempframe(:,:,2));
frameDiff (:,:,3)=abs(frameNow(:,:,3)-tempframe(:,:,3));

map=ones (height,width) ;
map (frameDiff (:,:,1)>minDiff)=0;

map (frameDiff (:, :,
map (frameDiff (:, :,

$extract the parts considered "stable background"

Bframe(:,:,1)=map.
Bframe(:,:,2)=map.
Bframe(:,:,3)=map.
¥reset foreground
Fframe(:,:,:)=0;

Fframe(:,:,1)=map
Fframe(:,:,2)=map
Fframe(:, :,3)=map

%gaussian mixture
[i,j]=find (map(:

.*zeros (size (frameNow, 1)
.*zeros (size (frameNow, 1)
.*ones (size (frameNow, 1)

2)>minDiff)=0;
3)>minDiff)=0;

*frameNow (:,:,1) ;
*frameNow (:, :,2) ;
*frameNow (:,:,3);

frame
, 8ize (frameNow, 2)) ;

,size (frameNow, 2)) ;
,size (frameNow, 2)) *255;

matching & model updating

l:)==0);

from current frame

for k=1:size (i, 1)

pixels= reshape(frameNow(l(k) j(k),:),3,1);
miu=reshape (Gmiu(i(k),j(k),:,:),3,1,K);
sigma=reshape (Gsigma (i (k), (k),:),1,K);
weight=reshape (w(i(k),j(k),:),1,K);

$update gaussian mixture according to new pix value
match=findMatch2 (miu, sigma,pixel) ;
wmask=zeros (1,K) ;
if (match(1)==1)
[tempmiu, tempsig]=updateMatched2 (miuf(:,
sigma (match(2)), pixel,alpha);
miu=tempmiu;
sigma=tempsig;

,match(2)),

Gmiu(i(k),j(k),:,match(2))=miu;
Gsigma (i (k) ,j (k) ,match(2))=sigma;
wmask (match(2))=1;

weight=updateWeightRGB (weight, wmask, alpha) ;

bgweight=weight./sqgrt (sigma) ;
[maxW, maxWIdx] =max (bgweight) ;

if (maxWIdx==match(2))
Fframe (i(k),j(k),:)=[0;0;255];
else
Fframe (i (k),j(k), :)=miu;
end;
else %no match found

bgweight=weight./sqgrt (sigma) ;

[minW, minWIdx]=min (bgweight) ;

Gmiu (i (k),j(k),:, minWIdx)=pixel;

Gsigma (i (k) ,j (k) ,minWIdx)=initVar;

$consider this pixel as part of the foreground
Fframe (i(k),j(k),:)=pixel;

image

end;

w(i(k),q(k),:)=weight;

$decide background distribution and assign background value
bgweight=weight./sqrt (sigma) ;
[bgSort,bgIdx]=max (bgweight) ;

miu=reshape (Gmiu (i (k),j(k),:,:),3,1,K);
Bframe (i (k) ,j(k),:)=miu(:,:,bgldx (1)) ;
end;
Bframe(:,:,1)=Bframe(:,:,1)./max (max (Bframe(:,:,1)));
Bframe(:,:,2)=Bframe(:,:,2)./max(max (Bframe(:,:,2)));
Bframe(:,:,3)=Bframe(:,:,3)./max(max (Bframe(:,:,3)));
Fframe(:,:,1)=Fframe(:,:,1)./max([1l,max (max (Fframe(:,:,1)))1);
Fframe(:,:,2)=Fframe(:,:,2)./max([1,max (max(Fframe(:,:,2)))1);
Fframe(:,:,3)=Fframe(:,:,3)./max([1l,max(max (Fframe(:,:,3)))]1);
imwrite (Bframe, ['Bg’ int2str (frnum) ’.tif’]l,’'tiff’);
imwrite (Fframe, ['Fg’ int2str (frnum) ’.tif’]l,’'tiff’);

end;

$% function updateMacthed2 for the main code

o°

written by Tun-Yu Chiang

o° o o
o\

o°

update the mean and variance value of the matched distribution
according to the learning rate alpha

o\°
o\°

function [miu, sigmal]=updateMatched2 (oldmiu,oldsigma,pix,alpha)

miu=(l-alpha)*oldmiu + alpha*pix;
sigma=(1l-alpha) *oldsigma+ alpha* (pix-miu)’* (pix-miu) ;

o° o

clear all;
close all;

totalframe=79;
filename='pagemill’;

wsize=31;

margin=10;

winNum=4 ;

nl=180;

n2=360;
Vx=zeros (1, totalframe) ;
Vy=zeros (1, totalframe) ;

name=[filename ’'001.tif’];

tempframe=double (imread (name, ‘tif’)) ;

prevFrm=RGB2YUV (tempframe(:, :,1),tempframe(:,:,2),tempframe(:,:,3));
prevFrmY=prevFrm(:, :,1) ;

for frnum=1:2:totalframe*2-1

if (frnum<10)

name = [filename 00’ int2str(frnum) ’.tif’];
elseif (frnum>=10 & frnum<100)

name = [filename ‘0’ int2str (frnum) ’.tif’];
else

name = [filename int2str (frnum) ’.tif’];
end;

tempframe=double (imread (name, 'tif’)) ;
curnFrm=RGB2YUV (tempframe (:, :,1) ,tempframe(:,:,2),tempframe(:,:,3));
curnFrmY=curnFrm(:, :,1) ;

cwindow=zeros (wsize,wsize, winNum) ;
pwindow:zeros(wsize,wsize,winNum);

cwindow (1) =curnFrmY (margin:margin+wsize-1,margin:margin+wsize-1) ;
cwindow(:, ,2)=curnFrmY(margin:margin+wsize—l,n2—margin—wsize+1:n2—margin);
cwindow (:, :,3)=curnFrmY (nl-margin-wsize+l:nl-margin, margin:margin+wsize-1) ;
cwindow (:, :,4)=curnFrmY (margin:margin+wsize-1,n2-margin-wsize+1l:n2-margin) ;
pwindow(:, :,1) =prevFrmY (margin:margin+wsize-1,margin:margin+wsize-1) ;
pwindow(:, :,2)=prevFrmY (margin:margin+wsize-1,n2-margin-wsize+l:n2-margin) ;
pwindow(:, :,3)=prevFrmY (nl-margin-wsize+l:nl-margin,margin:margin+wsize-1) ;
pwindow(:, :,4)=prevFrmY (margin:margin+wsize-1,n2-margin-wsize+l:n2-margin) ;
mVec = zeros(4,2);
for i=1:4

oldblock=zeros (63,63) ;

oldblock(17:47,17:47)=cwindow(:, :,1) ;

newblock=zeros (63,63) ;

newblock (17:47,17:47)=pwindow(:,:,1);

ftold=fft2 (oldblock) ;
ftnew=fft2 (newblock) ;
corltn = fft2 (oldblock) .*conj (fft2 (newblock)) ;

nCorr= corltn./abs (corltn) ;
PCF=fftshift (ifft2 (nCorr)) ;

tempPCF = reshape (PCF,1,size(PCF,1)*size (PCF,2));
[peak, 1dx] =max (abs (tempPCF)) ;

mvx=floor (idx/size (PCF, 1)) ;
mvy=mod (idx, size (PCF, 1)) -1;

mvx=mvx-floor (size (PCF,2) /2)
mvy=mvy-floor (size (PCF,1) /2)
mVec(i,1)= mvx;
mVec (i,2)= mvy;

end;

Vx ((frnum-1) /2+1) =mean (mVec (:,1))/2;
Vy ((frnum-1) /2+1) =mean (mVec (:,2)) /2;

dx=sum(Vx (1: (frnum-1) /2+1)) ;
dy=sum (Vy (1: (frnum-1) /2+1)) ;

[xi,yi]=meshgrid(margin+l+2*dx:1:n2-margin+2*dx,margin+l+2*dy:1:nl-margin+2*dy) ;
[x,y] =meshgrid(1:360,1:180) ;
newframe=zeros (nl-margin*2,n2-margin*2,3) ;

newframe(:, :,1)=interp2(x,y,tempframe(:,:,1),xi,yi);

newframe(:, :,2)=1interp2(x,y, tempframe(:,:,2),xi,vyi);

newframe(:, :,3)=interp2(x,y, tempframe(:,:,3),xi,yi);

newframe (:, :,1)=newframe(:,:,1) ./max([1l, max (max (newframe(:,:,1)))1);
newframe (:, :,2)=newframe(:,:,2)./max([1, max (max (newframe(:,:,2)))1);
newframe(:, :,3) =newframe(:,:,3)./max([1,max (max (newframe(:,:,3)))]1);
imwrite (newframe, ['mc’ name (length(filename)+1:length(name))],’'tiff’);

prevFrmY=curnFrmY;
end;

figure;
quiver (Vx, Vy);

APPENDIX
MATLAB code: Motion segmentation

[)

% main.m

startFrame = 39; % starting frame to process
endFrame = 39; % end frame to process
buffSize = 15;

video = ’‘pagemill0O0l’;

file = strcat(’avi\’, video, '.yuv’);

% Initialize buffer
[frameBuffer, rows, cols] = InitFrameBuffer(video, startFrame, buffSize);

at level 0
pixels/frame at level 0

minRegionSize = 200; %
minSpeed = 2; %

tic;

for frame=startFrame:endFrame

fprintf (' \n\nProcessing frame %.3g (start/end - %.39/%.39)’, frame, startFrame, endFrame’) ;

fprintf ("\n-----------"“-- ")
fprintf (' \n-Elapsed time: %.3g minutes\n’, toc/60);

% Compute OF for contiguous regions with motion

[Vx, Vy, regionMap] = ComputeOF (frameBuffer, rows, cols, minRegionSize, minSpeed) ;
% color info added

colorIm = double(imread (strcat ('tifs\’, sprintf ('\\%.3d.tif’, frame))));

classMap = newCSegmenter2 (colorIm, Vx, Vy, regionMap, minRegionSize) ;

fileOut = strcat ('newmaps\’, video,sprintf (’'\\%.3d.tif’, frame)) ;
imwrite (uint8 (classMap), fileOut, ’'tif’);

[)

% update buffer

frameBuffer(:,1) = [];
im = read yuv(file, frame+ceil (buffSize/2));
frameBuffer = [frameBuffer im(:)];

end

fprintf (' \nTotal elapsed time: %.3g minutes’, toc/60);
fprintf ('\n’) ;

function [Vx, Vy, regionMap] = ComputeOF (frameBuffer, rows, cols, minRegionSize, minSpeed)

% COMPUTE OPTIC FLOW (Vx,Vy) IN IMAGE
fprintf (/' \nComputing optic flow’);

% LEVEL 2 - top level

fprintf (' \n-Level 2\n’);

[imlL2 im2L2] = genPyramidImages (frameBuffer, 2, rows, cols, 1);
[Vx2, Vy2] = EstimateOFInit (imlL2, im2L2);

% LEVEL 1
fprintf (' \n-Level 1\n’);
level = 1;

[r ¢] = size(imlL2) ;

Vx1lEst = 2*interp2(l:c, [l:xr]’, Vx2, .75:.5:c+.25, [.75:.5:r+.25]1");
VylEst 2*interp2(l:c, [l:r]’, Vy2, .75:.5:c+.25, [.75:.5:r+.25]");

speed = sqgrt(VxlEst. 2 + VylEst."2);
regionMapl = segmentRegions (speed, minSpeed/ (27 level), minRegionSize/ (2" 1level)) ;

[imlLl im2L1l] = genPyramidImages (frameBuffer, 1, rows, cols, 1);
[Vx1l, Vyl] = EstimateOpticFlow(imlLl, im2Ll, Vx1lEst, VylEst, regionMapl) ;

% LEVEL O
fprintf (' \n-Level 0\n’);
[r ¢] = size(imlll) ;

Vx0Est = 2*interp2(l:c, [1l:r]’, Vx1l, .75:.5:c+.25, [.75:.5:r+.25]");
Vy0Est = 2*interp2(l:c, [l:r]’, Vyl, .75:.5:c+.25, [.75:.5:r+.25]");

speed = sqgrt (Vx0Est. 2 + VyOEst."2);
regionMap0 = segmentRegions (speed, minSpeed, minRegionSize) ;

[imlL0 im2L0] = genPyramidImages (frameBuffer, 0, rows, cols, 1);
[Vx0, Vy0] = EstimateOpticFlow(imlLO, im2L0, Vx0Est, VyOEst, regionMapO) ;

Vx = Vx0;
Vy = Vy0;
regionMap = regionMapO;

function [Vx, Vy] = EstimateOpticFlow(iml, im2, VxEst, VyEst, regionMap)
[rows, cols] = size(iml) ;

window function used in LS solution to give

more influence to constraints at center of neighbourhood than

those at periphery.

weighting from Barron, et al. Performance of Optical Flow Techniques.
= [.0625, .25, .375, .25, .0625]’;

= W*W';

= W(:);

= diag (W) ;

o° o o o

=== =

[)

% generate LPF gaussian filter used in gradients2 function for efficiency
sigma = 1.5;
LPF = fspecial(’gaussian’, ceil(6*sigma), sigma) ;

% initialize Vx, Vy with estimates from previous levels
Vx = VxXEst;

Vy = VyEst;

% translation in pixels for each location

deltaX = round(VxEst) ;

deltaY = round(VyEst) ;

fprintf (’ Processing region (total %0.2g): ', max(regionMap(:)));

for region = 1l:max(regionMap(:))
[regionY regionX] = find(regionMap==region) ;

fprintf ('%0.2g.’, region);

for x=min(regionX) :max (regionX)
for y=min(regionY) :max (regionY)

% select window to compute derivatives on

window size is 1 larger than required since 2-pt difference used in

$ computing gradients

winl = iml(y-3:y+3, X-3:X+3);

win2 = im2 (y-3+delta¥(y,x) :y+3+delta¥(y,x), x-3+deltaX(y,x) :x+3+deltaX(y,x));

o\°

[Ixc, Iyc, Itc] = gradients2(winl, win2, LPF);

Ixc(2:6, 2:6);
Iyc = Iyc(2:6, 2:6);

H
»
Q
Il

Itc = Itc(2:6, 2:6);

% calculate optic flow (over entire frame)
A = Wx[Ixc(:) Iyc(:)]1;

b -WxItc(:);

v = A\b;

if (max(v)<1.5)
Vx(y,x) = deltaX(y,x) + v(1);
vy (y,x) deltaY(y,x) + v(2);
end

end
if (mod(x,32)=
fprintf (7 .-
end
end
end
fprintf (‘done’) ;

=0)
) ;

function newRegionMap = newCSegmenter2 (colorIm, Vx, Vy, regionMap, minRegionSize)

[rows cols] = size(VX);

% get x,y coordinates of region
[y2 x2] = find(regionMap) ;

idx2 = find(regionMap(:)) ;

regionSize = size(idx2,1);
red = 2*colorIm(:,:,1);
green = 2*colorIm(:,:,2);
blue = 2*colorIm(:,:,3);

[)

% 1f no regions of interest then return
if (isempty(idx2))

newRegionMap = zeros(rows, cols);
fprintf (' -No regions of interest for segmentation’);
return;
end
featureMatrix = [Vx(idx2) Vy(idx2) x2 y2 red(idx2) green(idx2) blue(idx2)];

k=5; % number of clusters to use in k-means clustering

N = 500; % training data points to use
class = gkmeans (featureMatrix, k, N);
% produce initial segmentation map
initMap = zeros (rows,cols) ;
for n=1:regionSize

initMap(y2(n),x2(n)) = class(n);
end

[

% remove isolated regions and write final result to newRegionMap
newRegionMap = zeros(rows, cols);

for r = l:max(initMap(:))

regionR = bwlabel (initMap==r); % label current region
for subregion = 1l:max(regionR(:))
if (sum(regionR (:)==subregion) >minRegionSize)
newRegionMap = newRegionMap + (r*5+subregion)*double ((bwmorph (regionR==subregion, ’clo:
end
end
end
function [Vx, Vy] = EstimateOFInit (iml, im2)
[rows, cols] = size(iml) ;
border = 3;

% first calculate gradients
[Ix Iy It] = gradients(iml, im2);

[r ¢] = size(iml) ;

Vx = zeros(r,c);
Vy = zeros(r,c);

window function used in LS solution to give

more influence to constraints at center of neighbourhood than

those at periphery.

weighting from Barron, et al. Performance of Optical Flow Techniques.

o° o° o o

W = [.0625, .25, .375, .25, .0625]’";
W o= WrW’;

W = W(:);

W = diag (W) ;

fprintf(*),

for x=1+border:cols-border
for y=l+border:rows-border
xRange = X-2:xX+2;
yRange = y-2:y+2;

Ixc = Ix(yRange, xRange) ;
Iyc = Iy(yRange, xRange) ;
Itc = It (yRange, xRange) ;

% calculate optic flow
A = Wr[Ixc(:) Iyc(:)]1;
b -W*Itc(:);

v = A\b;

if (max(v)<1l.5)

Vx(y,x) = v(1);
Vy (y,x) = v(2);
end
% end
end
if (mod(x,32) == 0)
fprintf ('%0.29%%..’, (100*(x-1)/(cols-border)))
end
end

fprintf ('done’) ;

function [iml, im2] = genPyramidImages (frameBuffer, level, rows, cols, LPF)
taps = 13; % # taps used by temporal LP gaussian filter - should be odd
ctap = ceil(13/2); % center tap
if (LPF)
switch level
case O,
sigma = .5; % set sigma <.2 for no temporal filtering at level 0
case 1,
sigma = 1;
case 2,
sigma = 1.5;
otherwise,
error (‘only 2 levels supported’) ;
end
g = fspecial(’'gaussian’, [taps 1], sigma);
iml = reshape (frameBuffer(:, 2:taps+l)*g, rows, cols);
im2 = reshape (frameBuffer(:, 3:taps+2)*g, rows, cols);
else
iml = reshape (frameBuffer(:,ctap+2),rows,cols);

im2 = reshape (frameBuffer(:,ctap+3),rows, cols) ;

end

for n=1:1level

iml = reduce(iml) ;
im2 = reduce (im2) ;

end

function [frameBuffer, rows, cols] = InitFrameBuffer (video, frameNum, buffSize)

frameBuffer = [];

center = ceil (buffSize/2);

fi

°
o

le = strcat('avi\’, wvideo, ’.yuv’);

fill frame buffer

for n=1:buffSize

im = read yuv(file, frameNum-center+n) ;
frameBuffer(:,n) = im(:);
end

[rows cols] = size(im) ;

function length = kDistance(x, dest)
FUNCTION
length = kDistance(x, dest)

Computes Euclidean distance from point x to
the set of points in matrix dest.
(specified by the rows)

o° o o° o° o o° o

[)

length = []; % initialize length vector

[)

% convert x into column vector if not already so
if (size(x,1)<size(x,2))

X = x'; % origin vector;
end

if dest is a vector (not a matrix)
then make sure it is a row vector
if (sum(size(dest)==1)>0)
if size(dest,1l)<size(x,2)
dest = dest’;
end
end

o o

for n=1:size(dest)
d = dest(n,:);
d = d’;

length = [length; sqgrt((x-d)‘’*(x-d))];

end
function [class, CC] = kmeans (featureMatrix, k)
FUNCTION
[class, CC] = kmeans (featureMatrix, k)

Performs kmeans clustering given the affine
parameters as rows in featureMatrix
k is the number of initial cluster centers to use.

class is the class number assigned to each row of the featureMatrix
CC are the cluster center parameters

o° o° o° o° o° o o° o° o°

% Parameters

initMinSep = 1; % min. initial separation of cluster centers

maxIterations = 20; % maximum number of iterations to do classification
STAGE ONE

Initialize cluster centers

cc_idx = kmeansInit (featureMatrix, k, initMinSep) ;

% form matrix whose rows are the cluster centers
cc = [1;

k = size(cc_idx); % actual number of clusters used
% (could be < k because not enough centers
% satisfying min. separation could be found)
for n=1:k
CC = [cC; featureMatrix(cc_idx(n),:)];
end
STAGE TWO

Classify iteratively

for debugging %
hold off;
points = ['ox+sd"ph’];
["ymcrgbwk’] ;

Q

(@)

=

O

=
|

n=1;
end debugging %

o)

o o® o° o° o o

[

% do classification
fprintf (' \n-Locating cluster centers’);

for iteration = l:maxIterations
fprintf (' .”);
distanceC = []; % distances from centers
for n=1:k
distanceC = [distanceC kDistance(CC(n, :), featureMatrix)];
end

% classify
[tmp newClass] = min(transpose (distanceC)) ;

% return if converged
if (iteration™=1)
if (sum(newClass’ “=class)==0)
break;
end
end

class = newClass’;
% re-number classes (some may have been eliminated)
maxValidClass = max(class) ;
for n=1:max(class)
if (isempty(find(class==n)))
[tmp idx] = find(class==maxValidClass) ;
class (idx) = n;
maxValidClass = maxValidClass-1;
end
end

[)

% calculate new centers
for n=1:max(class)
CC(n,:) = mean (featureMatrix(find(class==n),:),1);
end
end

function class = gkmeans (featureMatrix, k, N)

quick k-means

for large feature matrices with rows > 500

Uses random subset (N) of feature vectors (rows of featureMatrix) to
find cluster centers, then classify remaining points
to the closest centers.

o® o® o o o

[rows cols] = size(featureMatrix) ;

% 1f rows of feature matrix < N then no need to train on subset of data
if (size(featureMatrix, 1) <N)
[class cc] = kmeans (featureMatrix, k) ;
return;
end
% use random subset of feature points as training data to build cluster centers
idx = randperm(size (featureMatrix, 1)) ;
trainingData = featureMatrix(idx(1:N), :);
[class cc] = kmeans(trainingData, k) ;

[)

% classify all points using the found cluster centers
fprintf (' \n-Classifying points to clusters’);

cDistance = [];
for n=1:k
g = (featureMatrix - ones(rows,l) * cc(n,:))."2;
g = sum(qg,?2);
cDistance = [cDistance ql;
end
[tmp class] = min(cDistance’);
function centers = kmeansInit (featureMatrix, k, minSeparation)
FUNCTION

centers = kmeansInit (featureMatrix, k, minSep)
Initializes the center locations of the k-means
clustering algorithm.
The rows of featureMatrix contain the affine parameters
of each block;
k is the initial number of cluster centers desired; and

minSep is minimum separation between the initial cluster centers

centers is a vector of the row # in featureMatrix of the
selected cluster centers.

o o o® o° o° o° o° o° o° o° o° o° o o o°

blocks = size(featureMatrix,1l); % # blocks

[)

% choose centers

centers = [];
possibleCs = 1l:size(featureMatrix,1);
for m=1:k
idx = ceil (rand * (size(possibleCs,1)-1)) + 1;

c = possibleCs (idx) ;
% add selected index location to centers
centers = [centers; c];

for ¢ _idx = l:size(centers,1)

x = featureMatrix(centers(c_idx), :);

distFromX = kDistance(x, featureMatrix) ;

possibleCs = intersect (find(distFromX > minSeparation), possibleCs);
end

if (isempty (possibleCs))
break;
end
end

function [y,u,v] = read yuv(filename, framenum)
MODIFIED FROM read frame gcif.

Reads a designated frame from a gcif sequence and outputs
the y, u, and v components for that frame. For the provided
gcif sequenceg, all of the data for all of the frames is
contained in a single file.

[y,u,v] = read frame gcif (filename, framenum)
Arguments:
filename is a string, e.g. ’‘foreman.qcif’ (including quotes)

framenum is an integer (the first frame is frame 0)

o° o° o° o° o° o° o° o° o o° o° o° o° o

John Apostolopoulos (EE392J)

[)

rows = 180; % qcif resolution (quarter-CIF)
cols = 360;

fid = fopen(filename,’'r’);

fseek (fid, (framenum*rows*cols*1.5),-1) ; % Jumps to the desired frame
[temp, count] = fread(fid, [cols,rows], 'uchar’);
y = temp’;
[temp2, count] = fread(fid, [cols/2,rows/2], 'uchar’) ;
u = temp2’;
[temp2, count] = fread(fid, [cols/2,rows/2], 'uchar’);
v = temp2’;
fclose (fid) ;
function [xgrad, ygrad, tgrad] = gradients(iml, im2);
FUNCTION

[xgrad, ygrad, tgrad] = gradients(iml, im2);

o° o o o

Computes the spatial and temporal gradients for the current
frame iml given the next frame im2.

o o o

sigma = 1.5; % std dev of the gaussian filter used to smooth image
LPF = fspecial(’gaussian’, ceil (6*sigma), sigma); % gaussian 2D low pass filter

[)

% use average of two images to compute spatial gradients

LPimage = conv2(.5* (iml+im2), LPF, ’'same’);
xderiv = [.5 0 -.5];

yderiv = [.5 0 -.5]";

xgrad = conv2 (LPimage, xderiv, ’'same’);

ygrad conv2 (LPimage, yderiv, ’‘same’);

[)

% need to 1lpf time gradient to reduce ’'noise’ in Vx and Vy estimates
tgrad = conv2 (im2-iml, LPF, ’‘same’);

function [xgrad, ygrad, tgrad] = gradients2(iml, im2, LPF);

FUNCTION
[xgrad, ygrad, tgrad] = gradients(iml, im2);

Computes the spatial and temporal gradients for the current
frame iml given the next frame im2.

° o o o° o° o o° o

Same as gradients except need to specify LPF

% use average of two images to compute spatial gradients

LPimage = conv2(.5* (iml+im2), LPF, ’'same’);
xderiv = [.5 0 -.5];
yderiv = [.5 0 -.5]";

xgrad = conv2 (LPimage, xderiv, ’'same’);
ygrad conv2 (LPimage, yderiv, ’'same’);

[

% need to lpf time gradient to reduce ’'noise’ in Vx and Vy estimates
tgrad = conv2 (im2-iml, LPF, ’‘same’);

function newIm = reduce (im)

FUNCTION REDUCE

computes the ’'reduced’ version of the input image

by a factor of 2 in both dimensions as in

Burt & Adelson, The Laplacian Pyramid as a Compact Image Code, 1983

o° o o o

)

a = 0.6; % parameter given in paper to give optimal performanace
[rows, cols] = size(im) ;

% generating kernel (size 5x5)
w = [1/4-a/2, 1/4, a, 1/4, 1/4-a/2]1";

W = w*w’;

[)

% low pass filter image
LPFIm = conv2(im, W, ’‘same’);

$newIm = newIm(2:2:rows, 2:2:cols);

[)

% subsample image by 2.
newIm = interp2([l:cols]’, l:rows, LPFIm, [1.5:2:cols]’, 1.5:2:rows);

function regionMap = segmentRegions (speed, speedThresh, minRegionSize)

[L N] = bwlabel (speed>speedThresh) ;
[rows cols] = size(L);
for n=1:N

L = L(:);

regionSize = sum(L==n) ;

if (regionSize<minRegionSize)
idx = find(L==n) ;

L(idx) = 0;
end
L = reshape(L, rows, cols);
end
[N] = bwlabel (L) ;

regionMap = L;

function newimage = subsample (image, border, samprate)
SUBSAMPLE Subsamples an image
NEWIMAGE = SUBSAMPLE (IMAGE, M, N) removes a border of M pixels then
takes every N’th row then every N’th column.
[rows, cols] = size(image) ;
newimage = image (l+border:samprate:rows-border, l+border:samprate:cols-border) ;

o° o° o

