Estimation of 3-d Scene Structure and Motion

Bernd Girod

Image, Video, and Multimedia Systems Group Information Systems Laboratory Department of Electrical Engineering

Research Topics: Image, Video, and Multimedia Systems Group

Video Coding Algorithms

- Rate-distortion optimized video compression
- Multiframe prediction
- Error-resilient video coding
- Scalable video coding

Networked Multimedia Systems

- Internet video streaming
- Wireless video
- Voice over IP
- Digital watermarking

3-D Image Analysis and Synthesis

- 3-D motion estimation and structurefrom-motion
- Compression of lightfields for imagebased rendering
- Facial animation and expression tracking

Research Topics: Image, Video, and Multimedia Systems Group

Video Coding Algorithms

- Rate-distortion optimized video compression
- Multiframe prediction
- Error-resilient video coding
- Scalable video coding

Networked Multimedia Systems

- Internet video streaming
- Wireless video
- Voice over IP
- Digital watermarking

3-D Image Analysis and Synthesis

- 3-D motion estimation and structurefrom-motion
- Compression of lightfields for imagebased rendering
- Facial animation and expression tracking

Vision, Graphics, and Image Communication

Vision, Graphics, and Image Communication

3-D Image Analysis and Synthesis

<u>Conjecture</u> Interactive multimedia systems will make a great leap forward by combining 3-d computer vision and 3-d graphics.

Problem 1

"Simultaneous estimation of structure and motion" "Structure-from-Motion"

G, R_i, T_i unknown

Problem 1

"Simultaneous estimation of structure and motion" "Structure-from-Motion"

G, R_i, T_i unknown

Problem 2 "Model-based 3-d motion estimation" "Estimation of external camera parameters"

G known, R_i, T_i unknown

Problem 1

"Simultaneous estimation of structure and motion" "Structure-from-Motion"

G, R_i, T_i unknown

Problem 2 "Model-based 3-d motion estimation" "Estimation of external camera parameters"

G known, R_i, T_i unknown

Problem 3

"3-d reconstruction from calibrated views"

G unknown, R_i, T_i known

3-d geometry G

Outline of this talk

• Fundamental problems of 3-d image analysis and synthesis

- Simultaneous estimation of structure and motion
- Model-based 3-d motion estimation
- 3-d reconstruction from calibrated views
- Recent algorithms
- Experimental results
- Application: compression of light-fields

Problem 1

"Simultaneous estimation of structure and motion" "Structure-from-Motion"

G, R_i, T_i unknown

<u>Problem 2</u> "Model-based 3-d motion estimation" "Estimation of external camera parameters"

G known, R_i, T_i unknown

Problem 3

"3-d reconstruction from calibrated views"

G unknown, R_i, T_i known

Object or scene 3-d geometry **G**

Perspective Projection and Epipolar Line

Two-Stage Method

Simultaneous estimation of 3-d structure and motion

[Steinbach, Girod, ICASSP 1996] [Steinbach, Hanjalic, Girod, ICIP 1996]

Pre-computation of minima for all epipolar lines

Example

Image 2

3-d mosaicing with depth-based segmentation

[Steinbach, Eisert, Girod, Signal Processing, 1998]

3-d motion-based segmentation

[Steinbach, Eisert, Girod, Signal Processing, 1998]

Problem 1

"Simultaneous estimation of structure and motion" "Structure-from-Motion"

G, R_i, T_i unknown

Problem 2 "Model-based 3-d motion estimation" "Estimation of external camera parameters"

G known, R_i, T_i unknown

Problem 3

"3-d reconstruction from calibrated views"

G unknown, R_i, T_i known

3-d motion estimation for known geometry

Displacement field

$$\vec{d} = f(R,T,G)$$
between $I_1(x,y)$ and $I_2(x,y)$
Spatially varying
"basis functions"

$$\vec{d} \approx f_1 \cdot r_x + f_2 \cdot r_y + f_3 \cdot r_z + f_4 \cdot t_x + f_5 \cdot t_y + f_6 \cdot t_z$$

$$\vec{d} \approx f_1 \cdot r_x + f_2 \cdot r_y + f_3 \cdot r_z + f_4 \cdot t_x + f_5 \cdot t_y + f_6 \cdot t_z$$
Assume same brightness
of corresponding points
"Optical flow constraint"

- Solve by linear regression
- Apply iteratively in a resolution pyramid

Extension to flexible bodies

$$\vec{d} = f(R, T, G(\vec{p}))$$
Parametric
geometry
Spatially varying
"basis functions"

$$\vec{d} \approx f_1 \cdot r_x + f_2 \cdot r_y + f_3 \cdot r_z + f_4 \cdot t_x + f_5 \cdot t_y + f_6 \cdot t_z + f_7 \cdot p_1 + f_8 \cdot p_2 + \cdots$$

$$\frac{1}{2}\vec{d}^{T} \cdot \left(\frac{\frac{\partial I_{1}}{\partial x} + \frac{\partial I_{2}}{\partial x}}{\frac{\partial I_{1}}{\partial y} + \frac{\partial I_{2}}{\partial y}}\right) \approx I_{1} - I_{2}$$

Assume same brightness of corresponding points "Optical flow constraint"

- Solve by linear regression

Apply iteratively in a resolution pyramid

[Eisert, Girod, ICIP 1997] [Eisert, Girod, IEEE CGA, 1998]

Modeling of Facial Expressions

- Head geometry composed of 101 triangular B-spline patches
- Facial expressions by superposition of 66 FAPs (Facial Animation Parameters) according to MPEG-4 standard
- FAPs act on control points of triangular B-spline patches

Model-based videophone

Results: Peter

Original

Synthesized

Sequence: Peter, 230 frames, CIF resolution, 25 fps 1.2 kbps - 32.8 dB PSNR

Results: Eckehard

Original

Synthesized

Sequence: Eckehard CIF resolution, 25 fps

Results: Michelle

Original

Synthesized

Results: Peter as Eckehard

Original

Synthesized

Sequence: Peter, 230 frames, CIF resolution, 25 fps

Results: Eckehard as Peter

Original

Synthesized

Sequence: Eckehard CIF resolution, 25 fps

Results: Peter as Akiyo

Original

Synthesized

Sequence: Peter, 230 frames, CIF resolution, 25 fps

Results: Peter as Michelle

Original

Synthesized

Sequence: Peter, 230 frames, CIF resolution, 25 fps

Problem 1

"Simultaneous estimation of structure and motion" "Structure-from-Motion"

G, R_i, T_i unknown

Problem 2 "Model-based 3-d motion estimation" "Estimation of external camera parameters"

G known, R_i, T_i unknown

Problem 3 "3-d reconstruction from calibrated views"

G unknown, R_i, T_i known

3-D reconstruction from calibrated views: state-of-the-art

Stereo Methods

- Depth maps for image pairs $(2^{1/2}-d)$
- Occlusion problem
- Extension to > 2 views??
- Good: textured surfaces, parallel to image plane
- Bad: Depth discontinuties, object silhouette

• Silhouette Methods

- Backprojection of object silhouettes from many views into 3-space
- Intersection of backprojected silhouette cones: "Visual hull" approximates object surface
- Texture not exploited

Geometry Reconstruction from Many Views

Volumetric Reconstruction

- Subdivide object's bounding box into voxels
- Generation of multiple hypotheses for each voxel
- Hypothesis elimination by projecting visible voxels into all views
- Iterate over all voxels until remaining hypotheses are "photo-consistent"
 - processes all views simultaneously
 - exploits texture and silhouette information
 - yields solid 3-D voxel model

[Eisert, Steinbach, Girod, ICASSP 99] [Steinbach, Girod, Eisert, Betz, ICIP 2000]

Example

- 11 calibrated views, 352x288 pixels each
- Voxel array: 240 x 240 x 140
- 3.6 *10⁷ hypotheses generated
- Consistency test: 15 iterations through volume
- Result: 6.8 *10⁴ visible voxel

Original and Reconstructed Views

Original

Reconstructed for same pose

Interpolated Views

3-D Reconstruction from Many Calibrated Views

Sequence of original camera frames: 15 degree increments

rendered depth maps for the same viewing positions

Problem 1 Revisited: Many Views

Problem 1

"Simultaneous estimation of structure and motion" "Structure-from-Motion"

G, R_i, T_i unknown

Problem 2 "Model-based 3-d motion estimation" "Estimation of external camera parameters"

G known, R_i, T_i unknown

Problem 3

"3-d reconstruction from calibrated views"

G unknown, R_i, T_i known

Object or scene 3-d geometry **G**

View Calibration Using Silhouettes

• Exploit mutual consistency in pairs of views

[Ramanathan, Steinbach, Girod, VMV 2000]

Error Measure

 Incorrect calibration parameters lead to difference between tangent and projected 2-D cone

Experimental Results

- 32 views from a light-field
- Constrained turntable arrangement
- Translation parameter perturbed
- Projected silhouette of the reconstructed object shown for different stages of the algorithm

Original light-field image

Image-based Rendering Using Light-Fields

Spherical Recording Geometry

- Calibrated computer-controlled camera mount & turn-table
- 3 test light fields consisting of 32 x 8 calibrated images

Surface Representation

- Initial octahedral geometry
- Geometry refinement
 - determine vertex normals
 - move vertices to model surface
 - subdivide triangles

View-dependent texture-map coder

- Warp each image into a texture map
- Arrange texture maps in a 2-d array
- 4-d Haar wavelet decomposition of texture maps
- Quantization and encoding of wavelet coefficients using a 4-d extension of the Set Partioning in Hierarchical Trees (SPIHT) algorithm

[Magnor, Girod, VCIP 2000] [Girod, Magnor, ICIP 2000]

Results: Model-based Coder

Conclusions

• Recent algorithms to recover 3-d motion and/or geometry

- New direct method for structure-from-motion overcomes limitations of two-stage approach
- Robust model-based motion estimator, extended to non-rigid motion
- Example: facial expression tracking, videophone at 1kbps
- Volumetric reconstruction method processing many views simultaneously
- Application example: light-field compression
 - View-dependent texture mapping, 4-d embedded wavelet coder
 - Compression ratios 100...1000:1

Vision, graphics, and image communication are converging!

