
EE392C Emerging EE392C Emerging 
Applications:Applications:

Verification ApplicationsVerification Applications

April 15, 2003April 15, 2003
David BloomDavid Bloom

Suzanne RivoireSuzanne Rivoire
John WhaleyJohn Whaley



OutlineOutline

MotivationMotivation
Beyond simulation and testingBeyond simulation and testing
Model checkingModel checking
Theorem provingTheorem proving
Hardware supportHardware support
SummarySummary



MotivationMotivation

MissionMission--critical systemscritical systems
Ex. Space shuttle, medical instrumentsEx. Space shuttle, medical instruments

Complex, expensive systemsComplex, expensive systems
Ex. Telephone switching systems, arithmetic Ex. Telephone switching systems, arithmetic 
units in CPUunits in CPU

Used widely for both software and Used widely for both software and 
hardware systemshardware systems



Beyond Simulation and Beyond Simulation and 
TestingTesting

Simulation and testing require the development Simulation and testing require the development 
of inputs (stimuli), and observation of outputsof inputs (stimuli), and observation of outputs

Only as good as your test casesOnly as good as your test cases
Adequate for many commercial applications, but Adequate for many commercial applications, but 
not good enough for critical systems and suchnot good enough for critical systems and such
Formal verification exhaustively Formal verification exhaustively provesproves the the 
correctnesscorrectness

Much more time consuming and complexMuch more time consuming and complex



Model CheckingModel Checking

Create a finite state description of a Create a finite state description of a 
system to be verifiedsystem to be verified
Exhaustively search the finite state Exhaustively search the finite state 
space to determine if a specification is space to determine if a specification is 
truetrue
3 main steps in model checking:3 main steps in model checking:

1.1. Create the modelCreate the model
2.2. Specify properties that must holdSpecify properties that must hold
3.3. Verify model against specificationsVerify model against specifications



Model CheckingModel Checking

Verification should always terminate with a Verification should always terminate with a 
true or false conditiontrue or false condition

But, complexity of the model (number of finite But, complexity of the model (number of finite 
states) can explodestates) can explode
Process of verification is automatic, but can Process of verification is automatic, but can 
be prohibitively longbe prohibitively long

A lot of research on state reduction, which is not of A lot of research on state reduction, which is not of 
interest to usinterest to us
But, perhaps we can exploit parallelismBut, perhaps we can exploit parallelism



Model CheckingModel Checking
Large state space can be partitioned into Large state space can be partitioned into 
subspacessubspaces

Subspaces can be processed in parallel Subspaces can be processed in parallel ––
great for TLPgreat for TLP

Tend to be memory bound processes Tend to be memory bound processes ––
large ratio of memory to arithmetic large ratio of memory to arithmetic 
instructionsinstructions

Access patterns mostly random Access patterns mostly random –– little to no little to no 
locality to exploitlocality to exploit

Perhaps software Perhaps software prefetchingprefetching can helpcan help



Model Checking Model Checking –– Case StudyCase Study
Reduced Ordered Binary Decision Reduced Ordered Binary Decision 
Diagrams: a fundamental data Diagrams: a fundamental data 
structure in model checkingstructure in model checking
ROBDDsROBDDs are produced through the are produced through the 
repeated application of:repeated application of:

Redundant test elimination
Equivalent sub-graph sharing

We investigated the application We investigated the application 
characteristics of a popular BDD characteristics of a popular BDD 
packagepackage

BuDDyBuDDy package version 2.2package version 2.2
Compiled with Intel Compiled with Intel ––O3 compilerO3 compiler
Intel P4Intel P4--2.4 GHz using 2.4 GHz using VTuneVTune
BuDDyBuDDy test cases for modeltest cases for model--checkingchecking

x1

x2 x2

x3
x4

0 1

10

1
1

1

0

0

0

0 1



Model Checking Model Checking –– ResultsResults
As expected, it was almost As expected, it was almost 
completely memory boundcompletely memory bound

80% of time was spent on 80% of time was spent on 
cache missescache misses
CPI was 6.5CPI was 6.5
Read bus utilization: 8.38%Read bus utilization: 8.38%

To find equivalent nodes, To find equivalent nodes, 
code hashes all nodes into code hashes all nodes into 
a large hash tablea large hash table

Table is too large to fit into Table is too large to fit into 
the cache, and accesses are the cache, and accesses are 
randomrandom

Processor time

5%

74%

6%

5%3%7% Level 1 cache
load misses
Level 2 cache
load misses
64K Aliasing
Conflicts
Blocked Store
Forwards
Branch
mispredictions
Other



Theorem Theorem ProversProvers

Inductive and deductive verification Inductive and deductive verification 
techniquestechniques

PROS: No state explosionPROS: No state explosion

CONS: It’s hard! (And requires more CONS: It’s hard! (And requires more 
programmer intervention)programmer intervention)



Case Study: ACL2Case Study: ACL2

Developed in 1989 at UTDeveloped in 1989 at UT--Austin and AMDAustin and AMD
Shares ancestry with Stanford’s PVSShares ancestry with Stanford’s PVS
Written in Common LispWritten in Common Lisp

Develop Model Verify



TLP Opportunities in ACL2TLP Opportunities in ACL2

Foo

Bar2Bar1

Bazz

TLP

Speculative 
Multithreading

Make a change



Hardware support for bug Hardware support for bug 
detection (detection (OplingerOplinger & Lam 2002)& Lam 2002)
Hardware support for fineHardware support for fine--grained transactionsgrained transactions

Software marks beginning of transactionSoftware marks beginning of transaction
All further sideAll further side--effects (memory and register) are effects (memory and register) are 
bufferedbuffered
Software decides when to either commit or abort the Software decides when to either commit or abort the 
transactiontransaction

Use Thread Level Speculation to parallelize Use Thread Level Speculation to parallelize 
monitoring codemonitoring code

Very effective because monitoring code is typically Very effective because monitoring code is typically 
independent from original codeindependent from original code



Procedural ThreadProcedural Thread--level level 
Speculation (TLS)Speculation (TLS)

. . .

CALL

RET

RET

CALL

A1

A2

A3

B

C

EXECUTE

. . .

fork

fork

CALL

RET

A1

B

CALL

RET

A2

C A3

NORMAL
SEQUENTIAL
EXECUTION



need data
dependence
checking

Procedural ThreadProcedural Thread--level level 
Speculation (TLS)Speculation (TLS)

. . .

CALL

RET

RET

CALL

A1

A2

A3

B

C

EXECUTE

. . .

A1

B
A2

C A3

NORMAL
SEQUENTIAL
EXECUTION

CALL

RET

RET

CALL

A1

A2

A3

B

C

A1

B
A2

C A3

EXECUTE

fork

fork



Procedural ThreadProcedural Thread--level level 
Speculation (TLS)Speculation (TLS)

. . .

CALL

RET

RET

CALL

A1

A2

A3

B

C

EXECUTE

. . .

B
A2

C A3

NORMAL
SEQUENTIAL
EXECUTION

CALL

RET

RET

CALL

A1

A2

A3

B

C

EXECUTE

fork

fork

observed
data
dependence

ST

LD



unobserved
data
dependence

Procedural ThreadProcedural Thread--level level 
Speculation (TLS)Speculation (TLS)

. . .

fork

fork
ST

LDx
x
x x

x

NORMAL
SEQUENTIAL
EXECUTION

. . .

CALL

RET

RET

CALL

A1

A2

A3

B

C

EXECUTE

CALL

RET

RET

CALL

A1

A2

A3

B

C

EXECUTE



Procedural ThreadProcedural Thread--level level 
Speculation (TLS)Speculation (TLS)

. . .

fork

fork

x
x
x x

x
fork

A2

C A3

re-execute

A1

B

unobserved
data
dependence

. . .

fork

fork
NORMAL
SEQUENTIAL
EXECUTION

. . .

CALL

RET

RET

CALL

A1

A2

A3

B

C

EXECUTE

CALL

RET

RET

CALL

A1

A2

A3

B

C

EXECUTE



Using TLS to speed up Using TLS to speed up 
MonitoringMonitoring

. . .

. . .

. . .

fork

forkEXECUTE

INSERT
INSTRUMEN-
TATION

A1

A2

A3

A1

M1

M2

A2

A3

M1A2

A3

A1

M2

hopefully significant
parallelism between
monitoring and
original code



Using TLS to speed up Heavy Using TLS to speed up Heavy 
MonitoringMonitoring

. . .

. . .

. . .

fork
fork

EXECUTE

here, need independence
between monitoring
code invocations
to get decent speedup

fork

INSERT
INSTRUMEN-
TATION

M1 M1

M2

M3

M4

M2
M3

M4



Future DirectionsFuture Directions
Right now, performance not critical (or they’d Right now, performance not critical (or they’d 
be multithreading already!)be multithreading already!)

As models to be verified get more complex…As models to be verified get more complex…

As verification programs get smarter…As verification programs get smarter…



SummarySummary
Largely memory boundLargely memory bound

Ratio of memory to arithmetic operations is largeRatio of memory to arithmetic operations is large
Little to no localityLittle to no locality

PrePre--fetching might be effectivefetching might be effective

Good opportunities for exploiting TLPGood opportunities for exploiting TLP
Currently, research on methods of reduction Currently, research on methods of reduction 
probably more important than exploiting probably more important than exploiting 
hardwarehardware
Complexity of verification systems will scale with Complexity of verification systems will scale with 
growing complexity of systems to be analyzedgrowing complexity of systems to be analyzed


