EE392C Emerging
Applications:
Verification Applications

April 15, 2003
Davidl Bloom

Suzanne Rivoire
John Whaley.



Outline

= |Vliotivation

= Beyond simulation and testing
= |Viodel checking

= Theorem proving

= Hardware support

= Summary.



Motivation

= Vlission-critical systems
= Ex. Space shuttle, medical instruments

= Complex, expensive systems

= EX. Telephone switching systems, arithmetic
units in CPU

= Used widely for both software and
hardware systems



Beyond Simulation and
Testing

= Simulation and testing require the development
of Inputs (stimuli), and observation of outputs
= Only as good as your test cases

= Adequate for many commercial applications, but
not good enough for critical systems and such

= Eormall verification exhaustively proves the
COITECINESS

= Viuch more time consumingl and complex



Model' Checking

Create a finite state description of a
system to: be verified

Exhaustively search the finite state
space to determine It a specification Is
true

3 main steps In model checking:

1. Create the model
2. Specily properties that must hold
3. Verily moedel against speciiications



Model' Checking

= \/erification should always terminate with a
true or false condition

= But, complexity of the model (number of finite
states) can explode

= Process of verification: s autematic, but can
pe pronibitivelylong
" A |ot ofi research on state reduction, whichiis not of
Interest to us

= But, pernaps we can exploit parallelism



Model' Checking

= | arge state space can be partitioned into
subspaces

= Subspaces can be processed in parallel —
great for TLP

= T'end to be memory bound pProcesses —
large ratio) of memory. te antametic
Instructions

= Access patterns mostly random — little te no
locality to exploit

= Perhaps software prefetching canihelp



Model Checking — Case Study

= Reduced Ordered Binary Decision
Diagrams: a fundamental data
structure in model checking

= ROBDDs are produced through the
repeated application of: 0
= Redundant test elimination é
1

= Equivalent sub-graph sharing

= \We investigated the application
characteristics of a popular BOD
package
= BubDDby package version 2.2
= Compiled withi Intel =03 compiler
= |ntel P4-2.4 GHz using| VIlune
= BubDDy test cases for model-checking




Model Checking — Results

= As expected, it was almost
completely memory bound Processor time

= 80% of time was spent on 1% 5% T T e
cache misses o3 7o load misses
Level 2 h
ERCHIWAEI0r0 6% \‘V " load misses
= Read bus utilization: 8.38% e
. ’ S
= Tio find equivalent nodes, ~Forwards
: B h
code hashes all nodes into i e -
a large hash table S.0theg
74%

= Jableis too large to it into
the cache, and accesses are
random



Theorem Provers

" |nductive and deductive verification
technigues

" PROS: No state explosion

= CONS: It's hard! (And requires more
programmer intervention)



Case Study: ACL2

= Developed in: 1989 at UT-Austin and AMD
= Shares ancestry with Stanford’'s PVS
= Written in Common Lisp

AN

Develop Model



TLP Opportunities in ACL2
/ S ==

Speculative
___J Multithreading

v
| coEEEEEE pum—E— n
< > < >
Barl Bar?2 it b
L -~ /

Make a change
Bazz & ;



Hardware support for bug
detection (Oplinger & Lam 2002)

I Hardware support for fine-grained transactions
= Software marks beginning of transaction

= All further side-effects (memory and register) are
buifered

= Software decides when to either commit or abort the
transaction
' Use Thread Level Speculation to parallelize
monitering code

= \/ery efiective because monitering code is typically
Independent frem| eriginal code



Procedural Thread-level
Speculation (TLS)

A1

A2

A3

CALL

{)

A1

fork

A2

CALL fork

1)

A3




Procedural Thread-level
Speculation (TLS)

A1

A1

A2

C

A3




Procedural Thread-level
Speculation (TLS)

A1

ST
B

A2 ‘

C

LD for

A3




Procedural Thread-level

Speculation (TLS)

A1

A2

ST

C

A3




Procedural Thread-level
Speculation (TLS)

A1

A1

A2

A3

fork

fork

A2
fork

A3



Using IILS to speed up
Monitoring

A2
|

A1

A3

A2 ‘

A1
fork

fork
‘ | A3




Using IILS to speed up Heavy
Monitoring




Future Directions

I Right now, performance not critical (or they'd
be multithreading already!)

I As models to be veriiied get more complex...

ILAS verification programs get smarter...



sSummary.

Largely memory bound
= Ratio of memory. to arithmetic operations is large
= | ittle to no locality.

= Pre-fetching might be effective

Good opportunities for exploiting TLP

Currently, research on methods ofi reduction
probably moere iImportant tham exploiting
hardware

Complexity: of verification systems will scale with
growing complexity: off systems; to be analyzed



