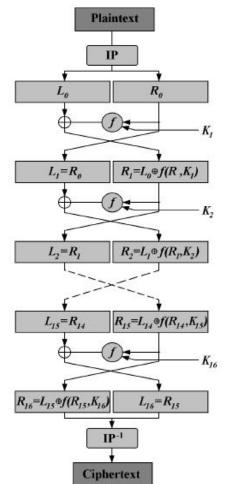
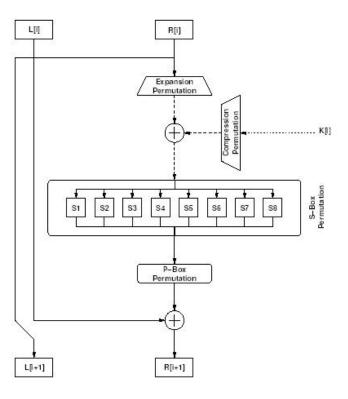
Security Applications

Abhyudaya Chodisetti Paul Wang Lee Garrett Smith

Cryptography

- Encryption
- Integrity : MAC(message authentication code)
- Digital signatures
- Authentication
- Extended applications
 - Electronic cash
 - Electronic voting
 - Secure auctions
 - Copyright protection


Major Components


- Block Ciphers
 - DES, AES
- Secure hash functions

– SHA-1

Public key encryption
 – RSA

DES

EE392C Application Studies

Chaining

- DES and AES both work on data blocks, 64 and 128bits respectively
- Most commonly used way of encrypting longer messages is CBC(Cipher Block Chaining), due to security properties
- Introduces serial dependency, limiting parallelism

Properties of DES/AES

- Data size / access patterns
 - Relatively small lookup tables (2K for DES)
 - For encryption, data size is arbitrarily large
 - Working set is small
 - Intermediate values are only used once and then discarded
- Input data is used in a streaming pattern
- Algorithm complexity is constant w.r.t. data
- Constant workload distribution over time

Software implementations

- Ratio of arithmetic to memory operations
 - Per block # of alu/memory operations :
 520/192 for DES, 507/111 for AES
 - Ratios are 2.7 for DES, 4.56 for AES
- DES is inefficient in software due to extensive use of bit-level permutation
- AES is designed to be more amenable to software implementations

Hashing functions

- SHA-1
 - 232 memory operations
 - 2879 other operations
 - Ratio of 12 alu/mem operations
- Reasonable amount of ILP compared to block ciphers

RSA (Public Key Encryption)

- Based on properties of modular arithmetic
- Two keys : private key d, public key e
- Encryption : $C = P^e \mod M$
- Decryption : $P = C^d \mod M$
- Uses property that d and e are chosen such that x^{de} = x mod M

RSA properties

- Key sizes : two 2048 bit integers
- Message size : 2048 bit integer
- Scales with O(k³) with efficient implementation (k: # key bits)
- Fast modular exponentiation required : multiplication and division
- In one software implementation, ratio of alu to memory operations is 1

Scaling trends

- Small number of very conservative standards
- Rate of change is slow (AES targeted for use during next 20 years)
 - Makes sense to embed special purpose hardware if performance is important
- Available scaling comes from :

Number of requests per time and data size will increase

Custom hardware

- Custom ASIC's for DES/AES
- Cryptography coprocessors
 - Includes HW implementation of DES/AES
 - Modular arithmetic modules for RSA

Conclusion

- Special purpose modules are a good idea for cryptography applications
- Major scaling direction for cryptographic applications will be independent thread level