Scientific Applications

Jing Jiang, Jayanth Gummaraju, Rohit Gupta

Outline

- Application Study
 - Vortex
- Architectural Issues
- Benchmarks

OAK RIDGE NATIONAL LABORATORY

Government-Classified Work

Government - Research

(Severe) Weather Prediction-& Climate Modeling

Automotive Design & Safety

Drug Discovery & Genomic Research

Aircraft/Spacecraft Design & Fuel-Efficiency

> Oil Exploration & Energy Research

Basic Scientific Research

taken from Cray Research website: www.cray.com Scientific Applications

3

Example Application: Vortex

- N-body Simulation
- O (N²) Interactions
- Each Processor has N/P bodies
- Binary Tree Reduction
- In this example:
 - 4096 bodies
 - 100 stages

APPLICATION	LANG	SCL	MTYPE	PROCS
CLIMATE	Fortran	80K	Delta	256
SEMI	Fortran	$50\mathrm{K}$	Delta	512
MOLECULE	Fortran	1K	nCUBE 2	512
RENDER	С	$2 \mathrm{K}$	Delta	32
EXFLOW	C & Fortran	12K	Delta	512
QCD	C	$2 \mathrm{K}$	nCUBE 1	256
VORTEX	Rortran	1K	nCUBE 2	64
REACT	C & Fortran	42K	Delta	512

Memory Requirements

APPL	DATA	DATA/PROC	CODE/PROC	OS/PROC	% USED
CLIMATE	$1750\mathrm{MB}$	7168KB	4096KB	4096KB	94
SEMI	$1000\mathrm{MB}$	2048KB	NA	4096KB	NA
MOLECULE	$1000\mathrm{MB}$	2048KB	200KB	200 KB	60
RENDER	$280\mathrm{MB}$	8960KB	260KB	4096KB	81
EXFLOW	$732 \mathrm{MB}$	1464KB	720KB	4096KB	38
QCD	17MB	70KB	98KB	100 KB	52
VORTEX	0MB	3KB	492KB	200KB	17
REACT	$536\mathrm{MB}$	1072KB	432KB	4096KB	34
AVE	$665 \mathrm{MB}$	$2854 \mathrm{KB}$	900KB	4096KB	54
MAX	$1750\mathrm{MB}$	8960KB	4096KB	4096KB	94

Processing Requirements

APPLICATION	FLOAT OPS.	FLOAT OPS/PROC	PRECISION
CLIMATE	2970G	$12200\mathrm{M}$	32
SEMI	10000G	20000M	64
MOLECULE	1000G	2000M	32
RENDER	24G	768M	32
EXFLOW	3994G	7987 M	32
QCD	119G	474M	32
VORTEX	42C	6777 M	32
REACT	27648G	55296M	64

I/O Requirements

APPLICATION	INPUT	OUTPUT	VOLUME	VOL/MFLOP	DISK	TAPE
CLIMATE	1MB	$1500 \mathrm{MB}$	$1500 \mathrm{MB}$	517B	10MB	1500MB
SEMI	10MB	$100 \mathrm{MB}$	$1000 \mathrm{MB}$	100B	$1000 \mathrm{MB}$	0MB
MOLECULE	0MB	$0 \mathrm{MB}$	0 MB	0B	0MB	0MB
RENDER	180MB	28MB	208MB	8858B	208MB	0MB
EXFLOW	0MB	1MB	1MB	0B	1MB	0MB
QCD	0MB	6MB	6MB	52B	6MB	0MB
VORIEX	00418	OMB	OMB	3B	OMB	0MB
REACT	0MB	$160 \mathrm{MB}$	3400MB	126B	$1600 \mathrm{MB}$	0MB
AVE	24MB	224MB	764 MB	1207B	353MB	187MB
MAX	180MB	1500MB	3400MB	8858B	1600MB	1500MB

Communication Requirements

APPLICATION	VOLUME	VOL/MFLOP	COUNT	COUNT/MFLOP	AVE SIZE
CLIMATE	965GB	325KB	1956M	660.0	505B
SEMI	120GB	12KB	$15\mathrm{M}$	1.5	8192B
MOLECULE	1956GB	$1956 \mathrm{KB}$	44M	44.0	45568B
RENDER	2GB	98KB	0 M	0.2	$512000\mathrm{B}$
EXFLOW	562GB	144KB	256M	65,6	2248B
QCD	7GB	$57 \mathrm{KB}$	94M	810.0	72B
VORTEX	1GB	35KB	1.11	29,4	1245B
REACT	132GB	$5 \mathrm{KB}$	12M	0.4	11264B
AVE	468GB	329KB	297 M	201.4	72637B
MAX	1956GB	$1956 \mathrm{KB}$	1956 M	810.0	512000B

General Characteristics

- Number Crunching Applications typically have high arithmetic:memory operations.
- Large data sets working set is also typically large but depends on application.
- Typically low temporal locality
- Depending on regularity of application can have high spatial locality

Parallelism

- Lots of DLP, TLP, & ILP
- DLP
 - Same operation performed on all bodies
- TLP
 - Convert DLP to TLP
 - More flexibility compared to DLP
- ILP
 - Parallelism within "threads"
- Example: Vortex
 - Mostly DLP

Architectural Issues

Performance Trends

Scaling faster than Moore's law!

4/18/2003

taken from Cray Research website: www.cray.com Scientific Applications

Processing Requirements

- Two approaches to achieve computational capacity:
 - Cluster Systems: typically 100s-1000s of processors
 - Stream/Vector Systems: fewer custom designed highly powerful processors

Interconnection Networks

Both BW and latency important

Bus:

Need arbitration protocolOnly one device at a time.

Crossbar Switch:

All processors & memories connected
O(N2) – doesn't scale well

Multistage Switch:

N X N switches built from smaller switches
E.g. 16X16 built from 2 stages of 4X4

Architectural Issues in Vortex

Data Memory	O (N)
FLOPS	O (N ² + P)
I/O Volume	O (N)
Communication	O (NP + P ²)
Volume	
Communication	O (P ²)
Count	

Current Design Challenges

- System Performance-to-Cost ratio: millions of dollars to build
 - Custom vs. Cluster systems
- Programming model not very intuitive
- I/O Scalability
- Power

Benchmarks

DLAB suite – measuring performance of distributed & resource sharing systems on scientific applications

Performance Type	Measuring Benchmark
Floating Point	LFK, Linpack, Nbench-byte-2.1, EuroBen-V3.9, NPB2.3- serial
Integer Arithmetic	Nbench-byte-2.1, NPB2.3-serial (IS)
Memory Subsystem	Stream, Nbench-Byte-2.1, Stream_OpenMp
Communications	PMB-MPI1, Eff_bandwidth, NPB2.3-parallel
Sample Compact Applications	NPB2.3-Parallel (CFD), Parallel_Chem (Chemistry)
Full Applications	Angus (CFD), SBLI (CFD), DLPOLY-2.13 (Molecular Dynamics)

Benchmarks

Two important performance measures:

- Peak Performance dependent on maximum computation capacity. eg. Linpack
- Sustained Performance depends on overall system architecture (interconnects, memory BW)
- DLAB measures this and other characteristics

Memory interconnects

Scientific Applications