Pattern Recognition

Speech, Image, Handwriting, etc.

Wajahat Qadeer Rebecca Schultz Ernesto Staroswiecki

 Automatic conversion of speech into textual representation

Preprocessing

Partitioning and compression of speech into a stream of feature vectors

Recognition

Identification of words through an optimal path of a graph (most time consuming)

Preprocessing

- loop oriented with fixed bounds and no loop carried dependencies
- High DLP with provision for TLP
- Computationally intensive requiring floating point and integer operations
- Small working set and memory foot print with regular data access patterns
- High degree of spatial and temporal locality?

Recognition

- Large working set with highly irregular control and data access patterns
- · Big memory foot print during initialization requiring high bandwidth
- Large caches and bigger block size reduce cache misses
- Little ILP but TLP offers substantial gains
- Algorithmic changes can exploit data locality

Other Algorithms

 Dynamic Time Warping, hidden Markov modeling, Neural Networks etc.

Benchmarks

Common benchmarks are RASTA (pre-processing) and Sphinx (recognition)

Scaling Trends

- Complex search mechanisms requiring more computational resources
- Large sets of databases requiring tremendous memory

IMAGE RECOGNITION

- Also a 3-step process:
 - Edge detection:
 Filtering
 - · Image processing / Characterization
 - Matching

IMAGE RECOGNITION

- Processing / Characterization
 - We need to find image descriptors:
 Shape contexts, Fourier descriptors, etc.

- Similar characteristics to voice recognition preprocessing except:
- Not necessary to use floating point or excessive computation,
- Yet more points to look at, which grow with the size of the image,
- And although the memory access pattern is very regular, is important to remember that now we are looking at a 2D window.

IMAGE RECOGNITION

Matching

- Once again, similar to voice recognition, but problems really exacerbated!
- Several algorithms: SVMs, Shortest Augmenting Path, etc
- Remember that dictionary must be MUCH larger
- Little ILP, some DLP, but mostly TLP
- Topics to explore: CAMs, prefetching (but be careful!)

HANDWRITING RECOGNITION

- Special case of image recognition
- Similar algorithms for selecting descriptors and matching
 - Neural Nets, Hidden Markov Models, etc
- Matching library is small and fixed size
- · Rarely done in hardware
 - Low data rate
- Scaling
 - Constant number of descriptor points irrespective of sample size
 - Limited opportunities for extensions