
Emerging Applications: Networking Applications 
Janani Ravi,  Metha Jeeradit, John Kim 

 
1. Introduction 
 
Network is essentially a distributed information system providing access to shared data 
objects between networking applications running on different nodes.    As the Internet 
gains its rapid growth, new and more demanding networking applications start to emerge 
such as voice over IP, storage over IP and media streaming.   To cope with the demands 
of these applications, the underlying network processor needs to be designed efficiently. 
 
2. Functionality and Requirements 
 
As stated in the introduction, the main function of these networking applications is to 
communicate data, voice or video over a network.  The requirements for these 
applications will depend on the interactive nature of the applications.  For example, voice 
over IP applications require low delay, jitter and loss rate for the communication to be 
acceptable.  Media streaming can tolerate moderate delay latency by buffering but still 
desire low jitter and loss rate.   On the other hand, general TCP/IP routing does not pose 
any stringent requirements on delay, jitter or loss because the protocol is designed to 
tolerate them.  In order to meet these requirements, the network processors must be 
flexible yet provide high performance. 
 
In addition, the applications can be categorized in 2 categories [2]: control-plane tasks 
that are less time-critical and are responsible for maintaining device states and data-plane 
tasks which are core device operations that are responsible for processing, transmitting 
and receiving the packets.   
 
3. General Characteristics 
 
[2] states that networking applications usually include following properties: 

• High Data-level parallelism 
o Amenable to multithreading technique  
o Multiple execution cores is desirable 

• Well-define inputs: network packets 
o Need special purpose hardware to move packet data 

• Modular in nature 
o Has a defined set of tasks to be performed 
o Can utilize a standardized organizations 

 
In this section, we examine the characteristics of networking applications. 
 
 
 
 
 



3.1 Computational-to-memory operations ratio 
 
Figure 1 shows the instruction distributions for MiBench benchmark suite [3] containing 
a networking benchmark as its subset.  Similarly, figure 2 shows the instruction 
distributions for a set of applications used in [4] that characterize different network 
processor architectures.  From these two figures, there is a fair amount of computational 
operations to memory operation whereas branch operations occur very infrequently.   
 

 
 

 
 
 
1. IP forward performs address-based packet lookups in a tree data structure and is a component of conventional 

layer-3 switches and routers. 
2. MD5 is a message digest application used to compute a unique signature over the data in each packet for 

authentication purposes. 
3. 3DES is an encryption routine used in this domain to encrypt the full payload of a packet. 

 
 
 
 
 
 
 
 

Figure 2

Figure 1



3.2 Working set size and memory access behavior 

 

 
 
 
Figure 3 shows the text and data sizes for the same MiBench suite showing the small data 
and text sizes of the networking benchmark. Figure 4 shows the caching behavior of 
another benchmark suite, Netbench [5].  It can be seen that both instructions and data are 
highly predictable as the global miss rate for both L1 and L2 caches are rather low.  
 
3.3 ILP  
 

 

Figure 3 

Figure 4

Figure 5



 
As can be seen in Figure 5 (taken from [1]) there is not that much ILP available in 
networking applications.   
 
 
4. Caches and Memory Access Patterns in Web Caching 
 
In this section, we describe the caching behavior and memory access patterns for web 
caching in details.  The idea of using proxy servers to cache came from the use of 
firewalls to filter the requests and responses of the users in organizations. Chances of the 
users in one organizations accessing the same set of documents is high and so cached 
documents at the server would be likely to result in hits. 
 
Advantages: 

• reduce bandwidth consumption 
• reduce access latency  
• reduce the workload of remote web servers 
• improves availability of cached documents 

 
Disadvantages: 

• access to stale data 
• extra processing due to cache miss 
• single proxy cache would be a bottleneck 

 
Desirable properties of WWW caching system: Fast access, robustness, transparency, 
scalability, efficiency, adaptivity, stability, load balancing, ability to deal with 
heterogeneity, simplicity. 
 
4.1 Caching Architectures 
 
Hierarchical 
Caches at different levels such as bottom, institutional, regional and national 
 
Advantages 

• Shorter connections times-as copies are placed on intermediate nodes 
Disadvantages 

• Every level can introduce delays 
• Higher level caches may introduce bottlenecks and have long queuing delays 
• Multiple copies stored at different cache levels 

  
Distributed 
Caches only at the bottom level with sharing of data between these caches 
Advantages 

• Shorter transmission times-most of the traffic flows through less congested levels 
• Better distributed bandwidth usage in the lower levels of network hierarchy 

Disadvantages 



• Higher bandwidth usage overall 
Hybrid 
There is a caching hierarchy with a certain number of caches cooperating at every level 
as in a distributed caching scheme. 
 
In the following graphs 

 - The relative popularity of the document larger indicates more popular 
 This is the measure of network congestion   

 The number of cooperating processors for hybrid caches 
 
Connection Time 
 

 
 
This depends on the number of network links to reach the document that we need. 
Unpopular documents: Both schemes experience very long connection times 
Medium popularity: Hierarchical caches give better connection times 
Very popular documents: Not much difference between the 2 schemes 
This shows how a hybrid cache with 4 cooperating processors performs a little better 
than both the other schemes. 
 
Transmission time 

 
 
This is the transmission times in a highly congested network scenario. Distributed 
routing has lower transmission times as documents travel over lower network levels. 
The hybrid scheme performs better than both the other schemes. 

Figure 6

Figure 7



 
Total Latency 

 
 
Depending on the document size the connection time or the transmission time is more 
relevant to the total document latency. For small document sizes the connection time is 
more important than the transmission time and for larger documents the transmission 
time becomes more important. The optimum number of cooperating caches needed 
varies according to the document sizes. In this case it is 16. 
 
4.2 Cache resolution/routing 
 
The main challenge in these approaches is how to locate a cache containing a desired 
document quickly. This problem is difficult to scale as, unlike conventional routing 
protocols, it can’t take advantage of route aggregation due to hierarchical addressing. 
Also the cache documents have to be updated frequently. This can be done using a cache 
routing table or hashing functions.(??? do we need to specify more details here) 
 
4.3 Prefetching 
 
Prefetching can be divided into 2 categories. Local and server-hint prefetching based on 
where the information for determining which objects to prefetch is generated. 
 
In local prefetching the agent doing the prefetching(e.g. browser client or proxy) uses 
local information(e.g. reference patterns) to determine which objects to prefetch. 
 

 

Figure 8

Figure 9



In server hint-based prefetching the server is able to use its content specific knowledge 
of the objects requested as well as the reference patterns from a far greater number of 
clients to determine which objects should be prefetched. 
 

 
 
These graphs show a bimodal distribution where we can see significant latency 
reductions(peaks around 95% to 100%) or little to no reduction(peak at around 0%). 
Thus for these models a web request can see a significant latency reduction or little or no 
reduction. 
 
4.4 Cache placement/ replacement 
 
These policies try to minimize various cost metrics such as hit rate, byte hit rate, average 
latency and total cost. They can be categorized as follows: 
 

1. Traditional replacement policies and its direct extensions-Least Recently Used, 
Least Frequently used, Pitkow/Rector which evicts objects in LRU order but if all 
have been accessed on the same day then the largest one is removed. 

2. Key based replacement policies-Evicts objects based on size, LRU-MIN which 
favors smaller objects, LRU-Thresholds which behaves like LRU except that 
objects larger than a particular size are never cached, Lowest Latency First evict 
document with the lowest download latency and others. 

3. Cost Based Replacement Policies-GreedyDual-Size associates a cost with each 
object and evicts the one with lowest cost/size, Hybrid associates a utility with 
each object and evicts one with least utility to reduce total latency and others 

 
4.5 Cache Coherency 
 
Cache coherence mechanisms provide 2 types of consistency, Strong cache consistency 
and weak cache consistency 
 
Strong cache consistency 
 
Client validation – the proxy polls each time to check if the page has been modified.  

Figure 10 



Server invalidation – the server send out invalidate request for a modified page. 
 
Weak Cache Consistency 
 
Adaptive TTL – Adjusts the documents Time To Live based on observations of its life 
time 
 
Piggyback Invalidation – Here the requests for validation or invalidation are 
piggybacked on proxy requests or client responses respectively. 
 
Other methods for improving web caching schemes are user access predictions, load 
balancing, proxy placements, dynamic data caching, and understanding web traffic 
characteristics. 
 
 
5 Parallelism 
 
One way to improve performance in the network protocol subsystem is to exploit the 
availability of multiple processors in the host. Many approaches to parallelism in network 
protocols have been proposed. Here approaches have been classified on the basis of unit 
of concurrency or what it is that the processing elements do in parallel. 
 
5.1 Layer Parallelism 
 
In layer parallelism each protocol layer is a unit of concurrency. Specific layers are 
assigned to process specific elements and messages are passed between protocols through 
inter-process communication. 
Advantage: Simple and defines a clean separation between protocol boundaries 
Disadvantage: Concurrency is limited to number of layers in the stack and large amounts 
of context switching and synchronization between layers occur 
 
5.2 Connection Level Parallelism 
 
Connections form the unit of concurrency in connection-level parallelism. Speedup is 
achieved with multiple connections, which are processed concurrently. 
Advantage: Simplicity and exploits the natural concurrency between connections 
Disadvantage: No parallelism is achieved within a single connection 
 
5.3 Functional Parallelism 
 
A protocol layers functions are a unit of concurrency. Functions within a single protocol 
layer (e.g. checksum, ACK generation) are decomposed and assigned to a single 
processing element. 
Advantage: Fine grained and can improve the latency of a single message as well as 
aggregate throughput 



Disadvantage: Requires synchronization within a protocol layer and dependent on 
concurrency available between the functions in that layer. 
 
5.4 Data level Parallelism 
 
Data is the unit of concurrency. Processing units are assigned to the same functions but 
they all operate on different parts of the same message. 
Advantage: Most fine-grained and the potential for the greatest improvement in 
throughput and latency. 
Disadvantage: Processing elements must synchronize which may be expensive. 
 
5.5 Packet Level Parallelism 
 
Packets are the unit of concurrency 
Advantage: Packets are processed regardless of which connection they are associated 
with or the layer in which they are present, achieving speedup for both single and 
multiple connections 
Disadvantage: Requires locking shared state. 
 
6 Bottlenecks 
 
Here are some of the bottlenecks identified by the real-time application papers 
[13,14,15]: 

• Main bottleneck is the inter-process communication cost while trying to provide a 
real-time performance. 

• The context switching cost can also be a bottleneck if it is expensive since you 
often need to context switch between the user’s software and operating system 
when communicating data to outgoing network.  

• Memory access latency 
 
7 Case Study: Distributed Video Streaming Over Internet 
 

• Video streaming needs to face challenges of high bit rates, delay and loss 
sensitivity, hence TCP protocol is not suitable. 

• This paper [14] provides a way to make multimedia content available at multiple 
sources so receiver can choose “best” sender based on BW, loss, and delay. 

 
7.1 Receiver Side: Rate Allocation Algorithm 
 

• Receiver is responsible for sending control information allocating the sending 
rates to all the senders based on estimated loss rate and available bandwidth. 

• The allocation algorithm is run only a few times when there is a change in the 
estimated bandwidth. 

• The algorithm to estimate bandwidth has high TLP since each of the sender’s 
bandwidth can be determined independently.   



• However, the use of estimated bandwidth information needs to be performed in 
one node to determine whether a change in the allocated sending rate should be 
made or not.  This is most likely sequential in nature and its computational 
complexity will grow with the number of sources.  The good news is that this step 
is done infrequently: only when estimated bandwidths have changed significantly. 

 
7.2 Sender Side: Packet Partition Algorithm 
 

• Each of the multiple senders keeps track of when to send a packet based on the 
last control information.   

• A sender j only sends a packet k if k’s arrival time at the receiver from source j is 
estimated to be largest.   

• This estimation is consistent among all senders because it is solely based on the 
control packet received from the receiver. 

• Each node needs to execute the algorithm to compute the estimated difference for 
all senders which also contains high amount of DLP (TLP) since each source’s 
estimated difference can be computed independently. 

 
8 Processor Architectures 
 
Rapid advancement in network technology has boosted the potential bandwidth of 
networks to the point that cabling is no longer the bottleneck. The bottleneck lies at the 
nodes of the network where data traffic is intercepted and forwarded. Specialized 
processors have been used at these nodes in order to handle data trafficking. These chips 
are called Networks Processors. 
 
The role of the Network Interface (NI), which allows a computer system to exchange 
messages with other systems connected to the network, has grown in importance with the 
evolution of network technology. To meet the functionality and performance 
requirements of present and emerging network applications, the current trend is to use 
programmable microprocessors on network interfaces (PNI) that can be customized with 
domain-specific software. 
 
To evaluate the various network architectures we need to consider what workloads must 
the processor support, what level of performance is required and what architecture 
delivers this level of performance. 
 
8.1 Workloads to be supported by the network processor 
 
The first six applications in Figure 11 possess a limited amount of data within the 
protocol headers of their packet and their processing requirements are independent of the 
packets overall size. But these applications maintain state tables in complex data 
structures that need to be searched on a per packet basis. The last three applications 
require significant processing capability to process packets at the network link rate. 
 



 
 

8.2 Performance 
 
The performance metric used is the number of messages per second that a given 
architecture can support for a given workload, which translates directly to network 
speeds that are enabled for the various architectures. 

8.2.1 Details of the 4 network processors evaluated 

Superscalar: A superscalar out of order processor with a 7 stage pipeline which uses a 7 
stage pipeline, scoreboarding and register renaming to resolve dynamic dependencies. 
Instruction issue width 
 
Fine-grained Multithreaded: Extends the core out-of-order superscalar processor with 
support for multiple hardware thread contexts 
 
Chip-Multiprocessor: Partitions chip resources rigidly in the form of multiple processors. 
This architecture allows multiple threads to execute completely in parallel. 
In this the issue width of each processor core is not scaled individually but increasing the 
number of single-issue cores scales the total processor issue width. Even though each 
core is under provisioned the speedups due to simultaneous issue from multiple cores is 
linear as seen in Figure 13 on the next page. 
 
Simultaneous Multithreaded: Has hardware support for multiple thread contexts and 
extends instruction fetch and issue logic to allow instructions to be fetched and issued 
from multiple threads each cycle. 
 
 
It can be seen from Figure 12 that the benchmarks exhibit limited ILP.  Increasing the 
functional units beyond a certain point does not improve performance much. Also 
increasing other processor resources such as increasing the instruction queue length and 
renaming registers did not help much 

Figure 11 



 
The throughput for FGMT shows only a modest improvement (MD5) and remains 
unchanged for the others (3DES, ip4). Absence of long latency operations in these 
workloads does not give FGMT any significant advantage over SS. 
 

 
 
 
 

 

Figure 12 

Figure 13 



 
 

 
 
SMT (Figure 14) combines the best features of previous architectures i.e. ILP and thread 
level parallelism. The performance of the benchmarks scale linearly with the number of 
contexts and issue-width. 
 
8.2.2 Architectural Comparison 
 
As can be seen in Figure 15, for both superscalar and FGMT architectures, the 
performance saturates with increasing number of contexts.  For superscalar, this is 
because, as mentioned in previous section, there is a limited amount of ILP for 
superscalar architecture to exploit.  For FGMT architecture, it is mainly useful for hiding 
long latency operations which does not happen often in networking applications.  On the 
other hand, for CMP and SMT architectures, the performance scales linearly with the 
number of processors, contexts, and FUs that you have because their architectures can 
exploit TLP explicitly by executing multiple threads in parallel.   
 

Figure 14 



 
 
 
9. Benchmarks 
 
With the increase of demand in networking application and the popularity of network 
processors, there is a need for specific benchmarks targeted for networking applications.  
The SPEC benchmarks which are used for general purpose processor are not suitable for 
network application because of the different characteristics of the applications, as 
mentioned above.  As a result, there have been several benchmarks created, some 
targeted specifically for networking and other benchmarks targeted for general embedded 
processors, with a particular suite within it focused on networking applications.  The 
most commonly used embedded benchmarks are the EEMBC suite, which divides the 
benchmark into 5 categories, with one of them being Networking.  The networking 
benchmark within EEMBC included the following algorithm [6]:  

• Dijkstra  - algorithm to calculate the shortest path problem 
• Patricia – data structure used in place of full trees, often used to represent 

routing tables in network application 
• Packet flow 

 
However, a problem with the EEMBC benchmarks is the fact that it is not readily 
accessible to academic because of its high cost[7] which resulted in the MiBench 
benchmarks from Univ. of Michigan.  Similar to EEMBC, MiBench is partitioned into 
six different suite with each suite targeting a specific embedded application and one of 
the target is network.  The network benchmarks within MiBench include the same 
Dijkstra and Patricia benchmark as well as a CRC32, cyclical redundancy check. 
 

Figure 15 



Other benchmarks in networking include Netbench and MediaBench from UCLA.  Even 
though Mediabench targets media applications(multimedia and communication systems), 
it has several benchmarks which are suitable for network applications.  However, because 
it lacks some of the other characteristics of network applications, the Netbench 
benchmarks were created to target network processors. The Netbench benchmarks are 
divided into 3 different type of applications [8]:   

1) low/micro level – operations nearest to the links 
2) routing level applications – IP level routing 
3) application level programs – the most timing consuming which include parsing 

packet headers and making intelligent decision about packet destination 
 
The Commbench from Washington University is another benchmark which focuses on 
streaming data flow based application as well as packet-based processing tasks such as 
routing and data forwarding [9] 
 
10. Discussion 
 
How do the different types of parallelism scale with data set? 
How many threads are sufficient? 
 
11. Conclusion 
 
Network applications exhibit the following properties: 

• Reasonable computation-to-memory operation ratio 
• Predictable cache behavior 
• Limited ILP but large amount of high level parallelism at packet level, data level 

and thread level 
• Efficient mapping to CMP and SMT architectures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



References 
 
General Applications Characteristics  
 
[1] http://cares.icsl.ucla.edu/pres.html 
 
[2] Network Processing: Applications, Architectures and Examples – Tutorial at Micro 
34, Dec. 2001 
 
[3] Gokhan Memik and William H. Mangione-Smith. NEPAL: A Framework for 
Efficiently Structuring Applications for Network Processors.  Second Workshop on 
Network Processors – NP2 (held in conjunction with HPCA), Anaheim / CA, Feb. 2003 
 
[4] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A tool for 
evaluating and synthesizing multimedia and communicatons systems,” in International 
Symposium on Microarchitecture, pp. 330–335, 1997. 
 
Benchmarks  
 
[5] Memik, G., W.H. Mangione-Smith, and W. Hu. NetBench: A Benchmarking Suite for 
Network Processors. In Proceedings of International Conference on Computer-Aided 
Design (ICCAD), pp. 39-42, Nov. 2001, San Jose / CA. 
 
[6] http;//www.eembc.org 
 
[7] Matthew R. Guthaus, et al , IEEE 4th Annual Workshop on Workload 
Characterization, Austin, TX, December 2001.  
[8] NetBench: A Benchmarking Suite for Network Processors Gokhan Memik, B. 
Mangione-Smith and W. Hu  CARES Technical Report No. 2001_2_01 
 
[9] T. Wolf and M. A. Franklin. CommBench : a telecommunications benchmark for 
network processors. In Proc. of IEEE International Symposium on Performance Analysis 
of Systems and Software, Austin, TX, Apr. 2 
 
Web Caching 
 
[10] Jia Wang.  A Survey of Web Caching Schemes for the Internet.  Cornell Network 
Research Group (C/NRG)  Department of Computer Science, Cornell University 
 
[11] P. Rodriguez, C. Spanner, and E. W. Biersack, Web caching architectures: 
hierarchical and distributed caching, Proceedings of WCW’99. 
 
[12] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, Exploring the bounds of Web 
latency reduction from caching and prefetching, Proceedings of the 1997 Usenix 
Symposium 
on Internet Technologies and Systems, Monterey, CA, Dec. 1997. 



 
Media Streaming  
 
[13] Michael Schöttner, Andreas Kassler, Alfred Lupper, Piotr Dudzik, Peter Schulthess. 
Application Sharing – Architecture and Performance Aspects.  Proceedings of the ACTS 
2nd Mobile Communications Summit, Aalborg, Denmark, October 1997. 
 
[14] T. P. Nguyen and A. Zakhor. Distributed Video Streaming Over Internet. 
Proceedings of SPIE/ACM MMCN 2002, January 2002. 
 
[15] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On peer-to-peer media 
streaming. In IEEE Conference on Distributed Computing and Systems, July 2002. 
 
Network  Processors 
 
[16] P. Crowley, M. Fiuczynski, J.-L. Baer, and B. Bershad. Characterizing processor 
architectures for programmable network interfaces. In Proc. International Conference on 
Supercomputing, Santa Fe, 2000. 
 
[17] Erich M. Nahum, David J. Yates, James F. Kurose, and Don Towsley. Performance 
issues in parallelized network protocols. In Proceedings of the First USENIX Symposium 
on OperatingSystems Design and Implementation (OSDI), pages 125–137, November 
1994. 


