Study of Multimedia Applications

Honggo Wijaya
Arjun Singh
Varun Sagar Malhotra
Navneet Aron

Characteristics

- Intensive computation for highly regular operations
- Data locality (Spatial and Temporal)
- Frequent encounter of small integer operands
- Usually demand real-time processing capabilities

Custom Hardware Support

- Application specific processors (DSPs)
- General Purpose Processors with Media coprocessors (Imagine).
- Adding Multimedia Instructions to the ISA (Intel MMX, Sun VIS, MIPS MDMX)

Benchmarks

- MediaBench+
 - Video: MPEG-2, MPEG-4, H.263
 - Audio : ADPCM coder
 - Graphics : Mesa
 - Image : JPEG, EPIC, Ghostscript
 - Security : PGP, Pegwit
 - Speech: GSM, G.271, Rasta
 - Also includes MPEG-4 and H.263 as a representative of emerging video applications

Instruction Mix Comparison

Branches

- The branches mainly due to loops.
 - Static branch prediction performs nearly as well as dynamic branch prediction (Fritts et al.)

Integer Data Size Histogram

Memory Access Patterns

- Load small amount of data at a time that can fit inside a cache, processes it, then throws it away
 - Most of the data is used before ejected from the cache
- Good spatial as well as reasonably good temporal locality
 - Prefetching techniques will work well since branches are also predictable
 - Stream buffers beneficial

Memory Access Patterns(contd)

- Multimedia applications generate fewer or equal data memory references per instruct as compared to SPEC Int95 applications
- They have a slightly lower or equal cache miss rate
- They do not place more stringent memory requirement than other applications

Instruction Cache Miss Ratios

Data Working Set Sizes

Parallelism

- Thread Level: Video (De)compression
 - coarse grained-suitable for CMPs
- Instruction Level: Image Processing
 - Fine grained –Superscalar/Wide Issue
 - Average Basic Block Size: 8
- Data Level: Graphics Applications
 - Producer Consumer locality suitable for stream architectures.
 - Compiler support in identifying data parallelism can boost performance (Vector processors)

Future Trends

- MPEG-4: Less processing regularity and high data rate
- Graphics Application :
 - Lots of floating point ops
 - High memory bandwidth
 - Distributed frame buffers is one proposed solution (one processor per frame buffer)
 - Communication overhead, high network bandwidth