Enterprise Applications

Chi Ho Yue
Sorav Bansal
Shivnath Babu
Amin Firoozshahian

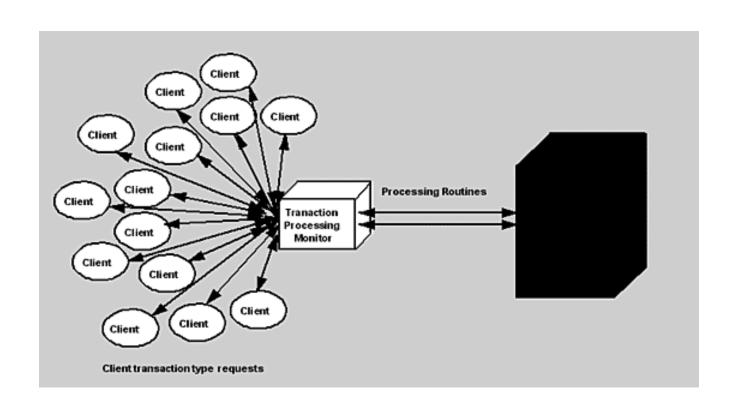
EE392C – Emerging Applications Study Spring 2003

Applications Studied

- Online Transaction Processing (OLTP)
 - Users/apps interacting with database in real-time
- Online Analytical Processing(OLAP) / data mining
 - Experts doing "offline" data analysis
- Web servers
 - Serves static HTML / dynamically generated pages
- File servers
 - Provide access to stored data over the network
- Video servers
 - Special type of file servers

Online Transaction Processing (OLTP)

- The delivery of information, products, services, or payments via digital computer networks
- Users/apps interacting with database in real-time
- Example:
 - online banking, online payment
 - eBay, Paypal, etc...


Architectural Requirements - I

- Data volume is very large, requires large storage for client account information
- Computational complexity of OLTP is usually minimal, depending on the particular application

Architectural Requirements - II

- Memory operations to arithmetic operations ratio is high; data of each individual client will be loaded in every transaction
- High bandwidth to storage and to network is favorable because both end can be the bottleneck of the system

Example of OLTP system

Memory Access Patterns and Behavior

- Distributed access to a single resource of data
- Access to distributed resources from a single application component
- Required properties of memory access
 - Atomicity, Consistency, Isolation, Durability
 - Coherence

Required Memory Properties I

Atomicity

- Transactions should be done completely and unambiguously
- Transactions should be undone and data should be rolled back when a failure in operation occurs
- Requires precise exception handling

Required Memory Properties II

Coherence

- During the course of a transaction, intermediate (possibly inconsistent)
- State of the data should not be exposed to all other transactions
- Two concurrent transactions should not be able to operate on the same data
- Database management systems usually implement this feature using locking

Type of Parallelism

- Thread-level parallelism
 - Same instructions, different data sets
- The participating operations are executed sequentially or in parallel threads requiring coordination and/or synchronization
- Symmetric multiprocessor (SMP) is currently the most popular server product for commercial application

Benchmarks

- Transaction Processing Performance Council (TPC)
- TPC-C for commercial workload
 - Mixture of read-only and update intensive transaction
 - Simulate a complete computing environment: terminal operators and database
- Measured performance metric
 - Throughput: transactions per minutes (TPC-C transaction)

Future Trends

- I/O system connected to the SMP is a potential bottleneck
- Scalability is a major limit on bus-based shared memory multiprocessors
- New research on alternative effective configuration of I/O system

Summary

- Lots of thread level parallelism
- Atomicity requires precise exception handling
- Data on memory and cache requires coherence
- I/O is the bottleneck for SMP based OLTP system
- Research on alternative effective I/O configurations

Databases for Decision Support

- On-Line Analytical Processing (OLAP)
- Data warehousing and mining

OLTP

- Users/apps interacting with database in real-time
- E.g., customers buying/selling books at Amazon
- As old as databases
- Large number of concurrent users, queries, connections

OLAP/Mining

- Experts doing "offline" data analysis
- E.g., Amazon wants to know which books are hot
- Emerged around late 80's
- Small number of concurrent users, queries, connections

OLTP Vs. OLAP/Mining (contd.)

OLTP

- Simple queries, often predetermined,
- Relatively little data (~GB)
- Each query touches little data
- Little computation per query
- Simple computation
- Data is continually updated
- Accuracy and recovery important, hence strict transactions
- Throughput is most important

OLAP/Mining

- Complex, ad-hoc queries
- Very large data sets (~TB)
- Queries touch large data sets
- Mining is compute intensive
- Complex operations in mining
- Data is mostly read-only
- Strict transactional semantics is not needed
- Latency is more important

OLAP/Mining: Data, Computation, and I/O

- Very large data sets
 - E.g., Walmart data warehouse is >24 TB
- Range of computational complexity
 - Compute-intensive data preprocessing, e.g., sort, indexing
 - Most queries perform simple computation
 - Complex mining tasks, e.g., pattern analysis
- OLAP/Mining is no longer I/O bound
 - Highly parallel disk arrays (RAID)
 - Asynchronous I/O with sequential log writes
 - Autonomous DMA engines, larger memory
 - Aggressively exploit thread-level parallelism

Memory Behavior and Parallelism

Memory Behavior

- Indexed and Sequential access patterns
- Good spatial locality
- Little data reuse across queries
- Low ratio of arithmetic operations to memory accesses. Exception: some mining tasks

Parallelism

- ILP not very effective
 - Instruction dependencies are high
 - Lesser number of loops compared to other software
- High DLP and TLP

Main Performance Bottleneck: Memory Stalls

- High L1 instruction and L2 data cache misses
 - Large memory footprints
 - Significant conflict misses
- But, memory stalls less severe than in OLTP
 - Smaller instruction footprint
 - Reduced transactional, security components
 - More computation and data reuse
 - Less synchronization

Memory Stalls: Some Observations

- Poor OS page mapping policy causes cache conflicts
- Page mapping based on reference order works best
- Offset conflicting virtual-address-space structures
- Small cacheable "critical" working sets exist
- Larger caches help, but not much
- Multiple contexts and prefetching very effective
- Use cache-conscious page layouts and structures

Benchmarks

- TPC-H is the popular OLAP benchmark
 - Models decision support for a large manufacturer
 - 22 complex SQL queries
 - Metrics: queries per hour, price/performance
- Many data mining benchmarks
 - Yearly KDD Cup
 - Intrusion detection benchmark
 - Metrics: precision, recall

Hot App: Processing Continuous Streams

- Monitoring applications, real-time needs
 - Network monitoring and intrusion detection
 - Processing sensor data in military applications

Database System

- Queries pull stored data
- OLTP, OLAP-style (onetime) queries
- Statistics available on stored data
- Traditional one-time query optimization

Data Stream System

- Streams pushed at system
- Long running (continuous) queries
- Stream characteristics often unknown and time-varying
- Online profiling and adapting necessary

Data, Computation, and I/O

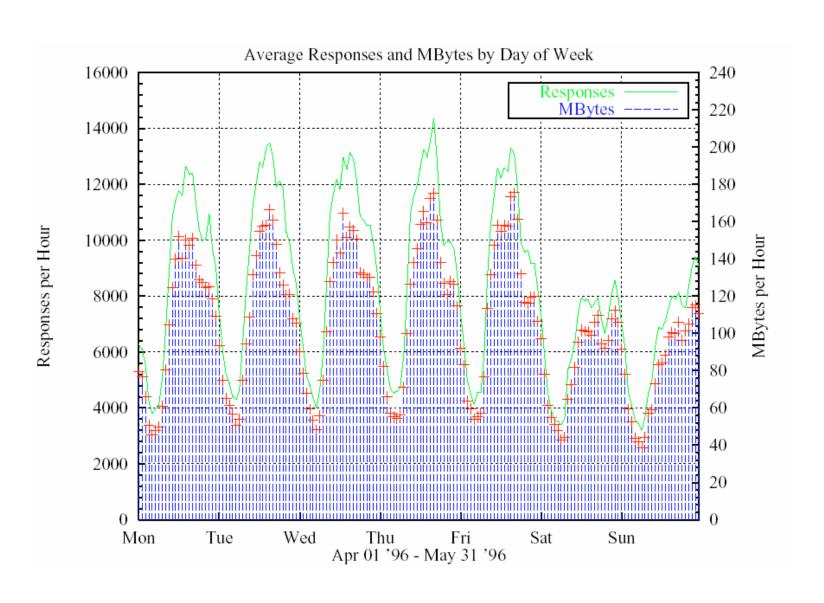
- Continuously arriving data streams
 - Up to gigabits per second in network monitoring
- Would like to run continuous OLAP/mining queries
- Most processing on recent windows over streams
 - E.g., stock ticks in the last hour
- Working set for typical systems might fit in memory
 - Disk mostly for archiving purposes
- Disk latency hiding like OLAP should work

Data Stream Systems: Performance Characterization

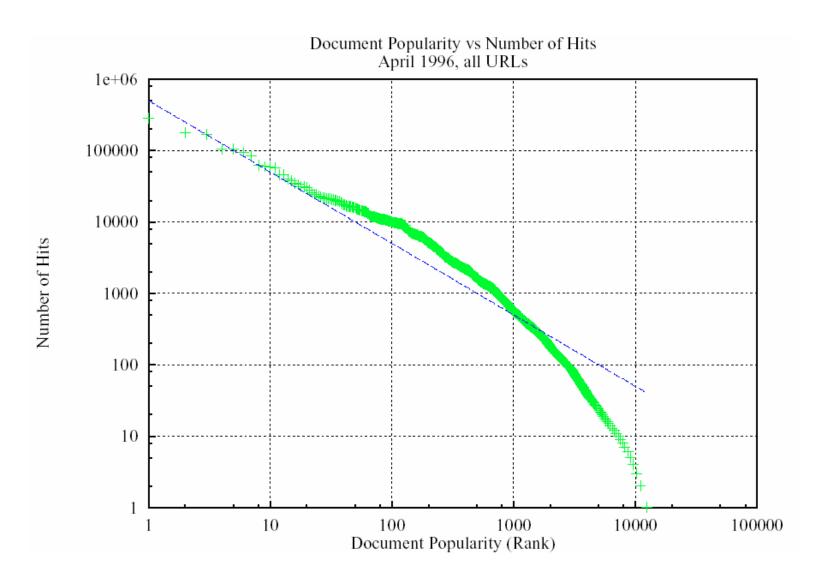
- No real data available. System development in progress
- Workload characteristics between traditional OLAP and Imagine-style media processing
 - Large windows over streams require non-sequential access
- Fast streams will stress cache performance
- Stream data and arrival characteristics change
 - Continuous profiling and adaptivity will be important

WebServers

- A WebServer typically serves
 - Static HTML Pages (including images, a very small number of media files)
 - Runs CGI scripts to dynamically generate pages
 - Recent Webservers run a JVM to run Java servlets which serve dynamic web pages


Typical WebServer Workloads

- Workloads
 2.5 Gbytes/day or 30 KB/sec
- 8400 hits/hour. For popular websites like BBC: 200hits/sec. Peak: 2000hits/s
- Typically 24-40 concurrent connections
- Peak 80-100 concurrent connections
- Throughput per connection typically 1.5KB/sec
- Images constitute 90% of Byte Traffic
- Most Frequent File Size = 4KB.
 Average File Size = 18KB


WebServer Tasks

- 1 server PARENT process to receive all incoming requests and spawn children
- Typically 40 "pre-forked" CHILD daemon processes
- Each Child Process:
 - Parses request
 - Retrieves Content (may involve running CGI script)
 - Writes result to TCP connection

Execution Behavior

Locality of access

Workload Comparison On two different machines

Pentium

- In order superscalar (2-way)
- 8KB L1 D-cache. No L2 Cache
- 64 bit inorder bus

Pentium Pro

- Speculative, OOO (upto 3 micro-ops/cycle)
- 8KB L1 D-cache, 256KB L2 unified cache
- 64 bit split-transaction bus

Web Server Workload Characteristics

	Pentium	Pentium Pro
CPI	6.65	3.45
Branches/Inst.	0.20	0.20
D-cache miss rate	0.12	0.04

Conclusions:

- 1. High number of branches
- 2. Cache Miss Rate crucial
- 3. There is some amount of ILP

Some Observations

- Key factors to keep in mind
 - Cache Size
 - I/O Bandwidth (disk to memory)
 - Bus Bandwidth (memory to network)
 - Server-side temporal locality (LFU caching works best)
- Obstacles
 - Higher branch misprediction ratio (tree-like execution path
 - Speculative and OOO execution would be less effective

Summary

- Temporal Locality (LFU works well)
- Types of Parallelism
 - TLP (many independent child threads)
 - ILP (demonstrated by Pentium studies)
- Key Factors Caching, Bus Bandwidth
- Obstacles Branches, relatively low ILP
- Scaling Trends: Distributed Servers

Benchmarks

• SPECweb96, SPECweb99, Webstone

File and Video Servers

File servers:

- Provide access to stored data over the network
- Used in databases, web servers, mail servers,
 ...

Video server:

Special type of file servers where stored data is multimedia

Architectural Requirements – Highlights

- Storage
 - High volume
 - High bandwidth to stored data
 - Usually magnetic disks (RAID)

- Network
 - High throughput network connections

Computational Requirements

- Processing power required to executes different tasks:
 - Scheduling
 - Pre-fetching
 - Buffering
 - Data distribution (over storage resources)
 - Fault tolerance

Memory

- Memory mostly used for caching and buffering:
 - Small caches can catch large read traffic
 - Used as buffers
 - Buffering video streams
 - For pre-fetching
 - For larger files, pre-fetching shows lightly better performance
- Access patterns depends on application
 - Usually bimodal: files are mostly read or mostly written

Benchmarks

- Spec SFS
 - Synthetic benchmark
 - Measures throughput and response time
 - Generates and increases load and observes response time
 - Workload is consisted of different operations:
 - Look up, read, write, get attr., Read link, read dir, create, remove, FS stat, set attr,...

Benchmarks

- Postmark
 - Measures performance for mail and news servers
 - Different working set, a pool of files which are
 - Highly dynamic
 - Small in size
 - Workload:
 - Create or delete
 - Read or append

Video Servers

- Differences with file servers:
 - Access method is mostly sequential
 - Huge storage requirements
- Requirements:
 - Guarantee for timely delivering of data
 - Efficient utilization of storage capacity and bandwidth

Video Transfer

- Real time: data transmitted at the speed of stream requirements
 - Buffering is done in the server
 - Smooth traffic over the network
- Fast-load: larger block are read from storage and sent to client
 - Buffering is done in the network and client
 - Bursty traffic over the network

Some Performance Metrics

- Maximum number of video streams
- Average latency
- Jitter rate
 - Amount of discontinuity in video stream that is allowed by client
- Availability
- Unfairness

Enterprise Applications: Conclusions

- Lots of TLP
- Mostly control code → limited ILP
- Bottleneck
 - Cache misses (greatly impacts performance)
 - I/O bandwidth (disk to memory)
 - Network bandwidth (memory to network)
 - Branch mis-prediction rate (tree-like path)
 - Speculative and OOO execution would be less useful

OLTP References

- http://www.sei.cmu.edu/str/descriptions/tp mt.html
- http://www.subrahmanyam.com/articles/transactions/NutsAndBoltsOfTP.html
- Analysis of Commercial Workload on SMP Multiprocessors, X. Zhang, Z. Zhu, X. Du

OLAP/Mining References

- Lo et. al., An Analysis of Database Workload Performance on Simultaneous Multithreaded Processors, ISCA 1998, http://citeseer.nj.nec.com/lo98analysis.html
- Ailamaki et. al., Weaving Relations for Cache Performance, VLDB 2001, http://www-2.cs.cmu.edu/~natassa/dbarch.html
- Ailamaki et. al., DBMSs on a Modern Processor: Where Does Time Go, VLDB 1999, http://www-2.cs.cmu.edu/~natassa/dbarch.html
- Trancoso et. Al., The Memory Performance of DSS Commercial Workloads in Shared-Memory Multiprocessors, HPCA-3, 1997, http://citeseer.nj.nec.com/trancoso97memory.html
- Rao et. al., Cache Conscious Indexing for Decision-Support in Main Memory, VLDB journal, 1999, http://citeseer.nj.nec.com/rao98cache.html

Stream Database References

- Stanford Stream Data Manager Project page: http://www-db.stanford.edu/stream
- Carney et. al., Monitoring Streams: A New Class of Data Management Applications, VLDB 2002, http://www.cs.brown.edu/research/aurora/publications.html

WebServer References

- Workshop on Workload Characterization (WWC) 98, 99, 00, 01, 02
- Webserver Workload Characterization, John Diley, Hewlett Packard Labs
- Webserver Workload Characterization: The search for Invariants. M. Arlitt, C. Williamson. Measurement and Modelling of Computer Systems 96
- Performance Impact of Uncached File Accesses in SPECweb99. K. Kant, Y. Won, WWC 99
- Characterizing the behavior of Windows NT Server Workloads using Processor Performance Counters. R. Radhakrishnan, F. Rawson. WWC 98
- Performance Analysis of a WWW Server. V. Almeida, J. Almeida, C. Murta. CMG '96

File/Video Server References

- Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson, "A comparison of file system workloads",
 http://research.microsoft.com/~lorch/papers/fs-workloads/fs-workloads.html
- "Spec SFS r1 v3.0 documentation", http://www.specbench.org/sfs97r1/docs/usersguide.html
- Jeffrey Katcher, "postmark: A new file system benchmark", <u>http://www.netapp.com/tech_library/3022.html</u>
- Fouad A. Tobagi, James E. Long, "client-server challenges for digital video", 37th IEEE computer society international conference digest of papers, pp 24-28, February 1992
- C. Bernhardt, E. Biersack, "A scalable video server: architecture, design and implementation", real-time systems conference, Paris, France, January 1995
- C. Bernhardt, E. Biersack, "video server architectures: performance and scalability", 4th open workshop on high speed networks, Brest, September 1994