
Probabilistic & Machine
Learning Applications

Joel Coburn
Ilya Katsnelson

Brad Schumitsch
Jean Suh

Outline

Genetic algorithms
Functionality of learning algorithms
Characteristics of neural networks
Available parallelism
System bottlenecks
Trade-off analysis

Genetic Algorithms (GE)
Generally a search procedure that optimizes
to some objective

Maintains a population of candidate solutions
Employs operations inspired by genetics (crossover and
mutation) to generate a new population from the previous
one
Finds the fittest solution candidate
Migrates the candidates to generate better “gene pool”
Repeats the entire procedure until the specified level of
goodness is achieved

Genetic Algorithms (2)
Used in a large number of scientific and
engineering problems and models:

Optimization,
Automatic programming,
VLSI design,
Machine learning,
Economics,
Immune systems,
Ecology,
Population genetics,
Evolution learning and social systems

Implementation
Massively parallel.

Most iterations are independent.
Several versions of the same candidate solution
can be executed in parallel (to collect statistical
data) thus providing even more parallelism.
Different algorithm models map naturally to a
specific HW architecture (see the figure on the
next slide).

The island model can be readily implemented in
distributed memory MIMD computer.
The cellular model can be implemented with SIMD
computers. MIMD implementations were also performed.

Implementation (2)

Workstation

Sub-
Pop.

Distributed
or

Island
Model

Sub-
Pop.

Sub-
Pop.

Sub-
Pop.

Sub-
Pop.

Migration Migration

M
ig

ra
tio

n

Migration

M
igration

Workstation

WorkstationWorkstation

Workstation

Cellular or
Diffusion

Model

Workstation
Cluster

Massively
Parallel

Computer

Implementation(3)

Communication between nodes
Almost no communications between independent runs. Can
happen only during the migration phases that occur after
several generations
Determines the number of processors needed to achieve the
optimal performance
Determines the number of individual candidate solutions that
can be put on one island (neighbourhood) for the best
performance

Performance

Performance largely depends on the
target problem and the implementation:

Host OS support – how well the host OS supports
multithreading and network communication
Cache use by the implementation on the host computer
Communication between nodes
Granularity of the population – number of candidate
solutions on a single processing node

Benchmarks for GAs
Several Test Suites have been used for long
time

De Jong test suite (1973)
Ackley (1987), Schaffer, Caruana, Eshelman, and Das
(1989), Davidor (1991)

Common problems are used as benchmarks:
The Traveling Salesperson
The Resource-Constrained Project Scheduling
The Flow Shop

Still in the process of defining

Benchmarks for GAs (2)
Parameters Used to evaluate GA
implementations:

The number of evaluations of the function needed to locate
the desired optimum
Run time needed to locate a solution
Speedup – the ratio between the mean execution time on a
single processor and the mean execution time on m
processors

Super-linear speedup is achievable
Measurement methods are still not standardized

Current Trends
Current trend is towards using high-level
software techniques to implement distributed
systems (java, CORBA, sockets, etc.)

Only indirect hardware support for parallelism is needed
Communication plays significant part in performance

However, implementations are often done on
the heterogeneous sets of platforms

Case Study
Java-based implementation of parallel
distributed GA (alba et. Al.)

Studied uniprocessor, homogeneous, and
heterogeneous implementations
Different host OS support – LINUX, NT, IRIX,
DIGITAL
Two general GA problems were used (ONEMAX
and P-PEAKS) with island configuration

Case Study (2)
Significant reduction in the number of steps
needed to solve the problem when using
heterogeneous configurations in comparison
with homogeneous.

Possible due to the exploitation of the search space at
different rates from different heterogeneous machines.
Can potentially be a drawback, but generally a good thing
because most laboratories have heterogeneous clusters.

Case Study (3)
Super-linear speedup for many configurations
and problems when using multiprocessor
configuration.

From hardware viewpoint, when moving from a sequential
machine to a parallel one, often not only the CPU power, but
other resources such as memory, cache, I/O, etc. increase
linearly with the number of processors.
Also less overhead for switching from working on one
solution to another.

Learning Algorithms
Consider the set of problems which are easily
solved in nature but not by humans

No domain knowledge
Usually involves a random search for a solution

Requires massive parallelism
An evolving species consists of a large number of
individuals competing for survival and
reproduction

Biologically-inspired technique based on
learning – Artificial Neural Networks (ANN)

Artificial Neural Networks
Neural Networks: non-linear static or
dynamical systems that learn to solve
problems from examples [Ienne]
Artificial neuron: accepts several input
variables and derives an output from their
weighted sum
To solve interesting problems (handwriting
and voice recognition, etc.), we combine
many artificial neurons to form an ANN

Artificial Neuron

Activation function is weighted summation of the inputs
Can represent in vector notation as a=wTx

Neural Network

Derivation of Gradient Descent

Behaviour During Execution

Learning Phase
Iterate through multiple data sets
Feedback loop to provide correction term
for weights

Processing Phase
Normal mapping through the network

Training Algorithm

Architectural Representation

Processing Element (single neuron)

Computational Complexity
Each input may pass through multiple
processing elements depending on the
number of layers in the network
Each processing element performs several
operations:

An update of activation values in the form of a
matrix-vector multiplication
Addition to determine final activation value
Output function y=f(a)

Even a small data set yields many
computations

Parallelism

Significant parallelism available
Conceptually, a processor per neuron
(TLP)
3 non-orthogonal ways to exploit it

Node Parallelism (1)
Also neuron parallelism
One processing element per node
Set of data inputs(N) from memory or
previous layer

One output per node
N multiplications and N additions
O(N) operations per processing element
ILP

Node Parallelism (2)
Private storage for weights of each node

N weights per neuron
All neurons can access their weights at the same
time

Serial data transfer between nodes
Only one data transfer between one node to
another node of next layer

Local storage for output data

Layer Parallelism (1)
One processing element per layer

Set of data inputs(N) from memory or previous
layer
Set of data outputs(M) per layer (inputs to the
next layer or to output function
NM multiplications and NM additions
O(NM) operations per processing element

A buffer to store input and output values for
computation and pass on to the next layer

Layer Parallelism (2)
Central storage for all weights of a layer
(shared memory)

Duplicated copy of a layer shares the weights
If only one copy of layer exists, private storage
can be applied

Serial or parallel data transfer between layers
(depends on # of multipliers)

If a processing element can do NM multiplications
followed by MN additions simultaneously, parallel
data transfer can facilitate the performance

Pattern Parallelism (1)

One processing element per
connections

Set of data inputs(N) from memory
Set of data outputs(M) to memory
Set of layers(K), where the ith layer
contains Li neurons
(# of multiplications and additions) = NL1
+ ∑LiLi+1 + LKM

Pattern Parallelism (2)

Each connection of neuron is calculated
in parallel
Of multipliers = # of connections
Central storage for all weights of a layer
Parallel data transfer between layers
Duplicated network running parallel

DLP

Design Example
Consider CNAPS (Connected Network of
Adaptive Processors) from Adaptive Solutions

Each neuro-chip has 64 processing elements
connected to a broadcast bus in SIMD mode

Each PN has 4Kbyte on chip SRAM to hold weights

Data Set and Working Set Size
Most applications use only 10s of inputs

Larger networks are rarely used because of
the unacceptable learning-time required
Could be increased if special-purpose
hardware is available

Working set size is a function of the
number of neurons in the system

Each neuron is typically operating on
several data elements at a time

Arithmetic Operations and
Memory Access

For the learning or processing phases, the
data set will have to be fetched from memory

Either one large parallel operation (too many
ports) or slower serial access

Inside each PN:
Read from SRAM to find weight for each input –
can be direct-mapped to fit data set
Multiply and add
Ratio of arithmetic/memory operations for each
PN is about 2

Bottlenecks on Current
Systems

Communication bandwidth
Many interconnections between processing
elements

Cost
Approximate to the number of processors required

Complex programming interfaces
Power consumption
Large area

Scaling Trends
Goal: Reach the performance of biological
synaptic networks

Energy Gap: digital VLSI technology requires
much more energy to implement a synaptic
connection (order of 106)
Capacity Gap: Storage density is far less than that
of biological networks (order of 106)

Technology scaling will shrink feature sizes
and make synaptic cells more compact
Less arithmetic precision and supply voltage
can reduce energy requirements

Performance Evaluation
ANN performance is measured by two
metrics:

Processing Speed: Multiply and accumulate
operations performed in unit time = MCPS
(Millions of Connections Per Second)
Learning Speed: Rate of weight updates = MCUPS
(Millions of Connection Updates Per Second)

These metrics ignore learning convergence

Benchmarks
Very scarce, but designs should be tested
with as many training data sets as possible
Neural network benchmarking collections

CMU nnbench
UCI machine learning databases archive
Proben1
StatLog data
ELENA data

References
Aybay, I., Cetinkaya, S., Halici, U., 1996,
“Classification of Neural Network Hardware”, Neural
Network World, IDG Co.,Vol 6 No 1.
Burr, J., 1993, "Digital Neurochip Design," Chapter 8
of Parallel Digital Implementations of Neural
Networks, H. W. Przytula and V. K. Prasanna, eds.,
Englewood Cliffs: Prentice Hall.
Burr, J., 1991, “Energy, Capacity, and Technology
Scaling in Digital VLSI Neural Networks”, IEEE
International Conference on Computer Design.

References (2)
Cornu, T., Ienne, P., 1994, “Performance of digital
neuro-computers.”, Proceedings of the Fourth
International Conference on Microelectronics for
Neural Networks and Fuzzy Systems.
Heemskerk, J.N.H, 1995, “Overview of Neural
Hardware.”, later published in his Ph.D. thesis.
Ienne, P., 1993, “Architectures for Neuro-Computers:
Review and Performance Evaluation.”, EPFL Technical
Report 93/21.

References (3)
Ienne, P., Kuhn, G., 1995, “Digital Systems for Neural
Networks.”, Digital Signal Processing Technology,
SPIE Optical engineering.
Jahnke, A., Klar, H., Schoenauer, T., 1998, “Digital
Neurohardware: Principles and Perspectives.”, Neural
Networks in Applications, Institute of
Microelectronics, Technical University of Berlin.

References (4)
Whitley D, Rana S, Dzubera J, et al. “Evaluating
evolutionary algorithms.” Artificial Intelligence. 85 (1-
2): 245-276 Aug 1996.
Alba E, Nebro AJ, Troya JM. “Heterogeneous
computing and parallel genetic algorithms.” Journal
of Parallel and Distributed Computing. 62 (9): 1362-
1385 Sep 2002.
“Solutions to parallel and distributed computing
problems : lessons from biological sciences.” Edited
by Albert Y. Zomaya, Fikret Ercal, Stephan Olariu.
New York : John Wiley, c2001.

	Probabilistic & Machine Learning Applications
	Outline
	Genetic Algorithms (GE)
	Genetic Algorithms (2)
	Implementation
	Implementation (2)
	Implementation(3)
	Performance
	Benchmarks for GAs
	Benchmarks for GAs (2)
	Current Trends
	Case Study
	Case Study (2)
	Case Study (3)
	Learning Algorithms
	Artificial Neural Networks
	Artificial Neuron
	Neural Network
	Derivation of Gradient Descent
	Behaviour During Execution
	Training Algorithm
	Architectural Representation
	Computational Complexity
	Parallelism
	Node Parallelism (1)
	Node Parallelism (2)
	Layer Parallelism (1)
	Layer Parallelism (2)
	Pattern Parallelism (1)
	Pattern Parallelism (2)
	Design Example
	Data Set and Working Set Size
	Arithmetic Operations and Memory Access
	Bottlenecks on Current Systems
	Scaling Trends
	Performance Evaluation
	Benchmarks
	References
	References (2)
	References (3)
	References (4)

