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Genetic algorithms
Functionality of learning algorithms
Characteristics of neural networks
Available parallelism
System bottlenecks
Trade-off analysis



Genetic Algorithms (GE)
Generally a search procedure that optimizes
to some objective

Maintains a population of candidate solutions
Employs operations inspired by genetics (crossover and 
mutation) to generate a new population from the previous 
one
Finds the fittest solution candidate
Migrates the candidates to generate better “gene pool”
Repeats the entire procedure until the specified level of 
goodness is achieved



Genetic Algorithms (2)
Used in a large number of scientific and 
engineering problems and models:

Optimization, 
Automatic programming, 
VLSI design,
Machine learning, 
Economics, 
Immune systems, 
Ecology, 
Population genetics, 
Evolution learning and social systems



Implementation
Massively parallel.

Most iterations are independent.
Several versions of the same candidate solution 
can be executed in parallel (to collect statistical 
data) thus providing even more parallelism.
Different algorithm models map naturally to a 
specific HW architecture (see the figure on the 
next slide).

The island model can be readily implemented in 
distributed memory MIMD computer.
The cellular model can be implemented with SIMD 
computers. MIMD implementations were also performed.



Implementation (2)
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Implementation(3)

Communication between nodes
Almost no communications between independent runs. Can 
happen only during the migration phases that occur after 
several generations
Determines the number of processors needed to achieve the 
optimal performance
Determines the number of individual candidate solutions that 
can be put on one island (neighbourhood) for the best 
performance



Performance

Performance largely depends on the 
target problem and the implementation:

Host OS support – how well the host OS supports 
multithreading and network communication
Cache use by the implementation on the host computer
Communication between nodes
Granularity of the population – number of candidate 
solutions on a single processing node



Benchmarks for GAs
Several Test Suites have been used for long 
time

De Jong test suite (1973)
Ackley (1987), Schaffer, Caruana, Eshelman, and Das 
(1989), Davidor (1991)

Common problems are used as benchmarks:
The Traveling Salesperson
The Resource-Constrained Project Scheduling
The Flow Shop

Still in the process of defining



Benchmarks for GAs (2)
Parameters Used to evaluate GA 
implementations:

The number of evaluations of the function needed to locate 
the desired optimum
Run time needed to locate a solution
Speedup – the ratio between the mean execution time on a 
single processor and the mean execution time on m
processors

Super-linear speedup is achievable
Measurement methods are still not standardized



Current Trends
Current trend is towards using high-level 
software techniques to implement distributed 
systems (java, CORBA, sockets, etc.)

Only indirect hardware support for parallelism is needed
Communication plays significant part in performance

However, implementations are often done on 
the heterogeneous sets of platforms



Case Study
Java-based implementation of parallel 
distributed GA (alba et. Al.)

Studied uniprocessor, homogeneous, and 
heterogeneous implementations
Different host OS support – LINUX, NT, IRIX, 
DIGITAL
Two general GA problems were used (ONEMAX 
and P-PEAKS) with island configuration



Case Study (2)
Significant reduction in the number of steps 
needed to solve the problem when using 
heterogeneous configurations in comparison 
with homogeneous.

Possible due to the exploitation of the search space at 
different rates from different heterogeneous machines.
Can potentially be a drawback, but generally a good thing 
because most laboratories have heterogeneous clusters.



Case Study (3)
Super-linear speedup for many configurations 
and problems when using multiprocessor 
configuration.

From hardware viewpoint, when moving from a sequential 
machine to a parallel one, often not only the CPU power, but 
other resources such as memory, cache, I/O, etc. increase 
linearly with the number of processors.
Also less overhead for switching from working on one 
solution to another.



Learning Algorithms
Consider the set of problems which are easily 
solved in nature but not by humans

No domain knowledge
Usually involves a random search for a solution

Requires massive parallelism
An evolving species consists of a large number of 
individuals competing for survival and 
reproduction

Biologically-inspired technique based on 
learning – Artificial Neural Networks (ANN)



Artificial Neural Networks
Neural Networks: non-linear static or 
dynamical systems that learn to solve 
problems from examples [Ienne]
Artificial neuron: accepts several input 
variables and derives an output from their 
weighted sum
To solve interesting problems (handwriting 
and voice recognition, etc.), we combine 
many artificial neurons to form an ANN



Artificial Neuron

Activation function is weighted summation of the inputs
Can represent in vector notation as a=wTx 



Neural Network



Derivation of Gradient Descent



Behaviour During Execution

Learning Phase
Iterate through multiple data sets
Feedback loop to provide correction term 
for weights 

Processing Phase
Normal mapping through the network



Training Algorithm



Architectural Representation

Processing Element (single neuron)



Computational Complexity
Each input may pass through multiple 
processing elements depending on the 
number of layers in the network
Each processing element performs several 
operations:

An update of activation values in the form of a 
matrix-vector multiplication
Addition to determine final activation value
Output function y=f(a)

Even a small data set yields many 
computations



Parallelism

Significant parallelism available
Conceptually, a processor per neuron 
(TLP)
3 non-orthogonal ways to exploit it



Node Parallelism (1)
Also neuron parallelism
One processing element per node
Set of data inputs(N) from memory or 
previous layer

One output per node
N multiplications and N additions
O(N) operations per processing element
ILP



Node Parallelism (2)
Private storage for weights of each node

N weights per neuron
All neurons can access their weights at the same 
time

Serial data transfer between nodes
Only one data transfer between one node to 
another node of next layer

Local storage for output data



Layer Parallelism (1)
One processing element per layer

Set of data inputs(N) from memory or previous 
layer
Set of data outputs(M) per layer (inputs to the 
next layer or to output function
NM multiplications and NM additions
O(NM) operations per processing element

A buffer to store input and output values for 
computation and pass on to the next layer



Layer Parallelism (2)
Central storage for all weights of a layer 
(shared memory)

Duplicated copy of a layer shares the weights
If only one copy of layer exists, private storage 
can be applied

Serial or parallel data transfer between layers 
(depends on # of multipliers)

If a processing element can do NM multiplications 
followed by MN additions simultaneously, parallel 
data transfer can facilitate the performance



Pattern Parallelism (1)

One processing element per 
connections

Set of data inputs(N) from memory
Set of data outputs(M) to memory
Set of layers(K), where the ith layer 
contains Li neurons
(# of multiplications and additions) = NL1
+ ∑LiLi+1 + LKM



Pattern Parallelism (2)

Each connection of neuron is calculated 
in parallel
# Of multipliers = # of connections
Central storage for all weights of a layer
Parallel data transfer between layers
Duplicated network running parallel

DLP



Design Example
Consider CNAPS (Connected Network of 
Adaptive Processors) from Adaptive Solutions

Each neuro-chip has 64 processing elements 
connected to a broadcast bus in SIMD mode

Each PN has 4Kbyte on chip SRAM to hold weights



Data Set and Working Set Size
Most applications use only 10s of inputs

Larger networks are rarely used because of 
the unacceptable learning-time required
Could be increased if special-purpose 
hardware is available

Working set size is a function of the 
number of neurons in the system

Each neuron is typically operating on 
several data elements at a time



Arithmetic Operations and 
Memory Access

For the learning or processing phases, the 
data set will have to be fetched from memory

Either one large parallel operation (too many 
ports) or slower serial access

Inside each PN:
Read from SRAM to find weight for each input –
can be direct-mapped to fit data set
Multiply and add
Ratio of arithmetic/memory operations for each 
PN is about 2



Bottlenecks on Current 
Systems

Communication bandwidth
Many interconnections between processing 
elements

Cost
Approximate to the number of processors required

Complex programming interfaces
Power consumption
Large area



Scaling Trends
Goal: Reach the performance of biological 
synaptic networks

Energy Gap: digital VLSI technology requires 
much more energy to implement a synaptic 
connection (order of 106)
Capacity Gap: Storage density is far less than that 
of biological networks (order of 106)

Technology scaling will shrink feature sizes 
and make synaptic cells more compact
Less arithmetic precision and supply voltage 
can reduce energy requirements



Performance Evaluation
ANN performance is measured by two 
metrics:

Processing Speed: Multiply and accumulate 
operations performed in unit time = MCPS 
(Millions of Connections Per Second) 
Learning Speed: Rate of weight updates = MCUPS 
(Millions of Connection Updates Per Second)

These metrics ignore learning convergence



Benchmarks
Very scarce, but designs should be tested 
with as many training data sets as possible
Neural network benchmarking collections

CMU nnbench
UCI machine learning databases archive
Proben1
StatLog data
ELENA data
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