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Abstract—Convolutional low-density parity-check (LDPC) en-
sembles, introduced by Felström and Zigangirov, have excellent
thresholds and these thresholds are rapidly increasing functions
of the average degree. Several variations on the basic theme have
been proposed to date, all of which share the good performance
characteristics of convolutional LDPC ensembles. We describe the
fundamental mechanism that explains why “convolutional-like” or
“spatially coupled” codes perform so well. In essence, the spatial
coupling of individual codes increases the belief-propagation (BP)
threshold of the new ensemble to its maximum possible value,
namely the maximum a posteriori (MAP) threshold of the under-
lying ensemble. For this reason, we call this phenomenon “threshold
saturation.” This gives an entirely new way of approaching ca-
pacity. One significant advantage of this construction is that one can
create capacity-approaching ensembles with an error correcting
radius that is increasing in the blocklength. Although we prove
the “threshold saturation” only for a specific ensemble and for
the binary erasure channel (BEC), empirically the phenomenon
occurs for a wide class of ensembles and channels. More generally,
we conjecture that for a large range of graphical systems a similar
saturation of the “dynamical” threshold occurs once individual
components are coupled sufficiently strongly. This might give rise
to improved algorithms and new techniques for analysis.

Index Terms—Belief-propagation (BP) decoder, capacity-
achieving codes, convolutional low-density parity-check (LDPC)
codes, density evolution (DE), EXIT curves, maximum a posteriori
(MAP) decoder, protographs.

I. INTRODUCTION

I N this paper, we consider the design of capacity-ap-
proaching codes based on the connection between the

belief-propagation (BP) and maximum a posteriori (MAP)

Manuscript received April 15, 2010; revised July 21, 2010; accepted August
20, 2010. Date of current version January 19, 2011. The work of S. Kudekar
was supported by the Swiss National Science Foundation under Grant 200020-
113412.

This paper is part of the special issue on “Facets of Coding Theory: From
Algorithms to Networks,” dedicated to the scientific legacy of Ralf Koetter.

S. Kudekar was with the École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne CH-1015, Switzerland. He is now with the New Mexico Consortium
and CNLS, Los Alamos National Laboratory and the New Mexico Consortium,
Los Alamos, NM 87544 USA (e-mail: skudekar@lanl.gov).

T. J. Richardson is with Qualcomm, Flarion Technologies, Bridgewater, NJ
08807 USA (e-mail: tjr@qualcomm.com).

R. Urbanke is with the School of Computer and Communication Sciences,
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015,
Switzerland (e-mail: ruediger.urbanke@epfl.ch).

Communicated by G. D. Forney, Jr., Associate Editor for the special issue on
"Facets of Coding Theory: From Algorithms to Networks."

Digital Object Identifier 10.1109/TIT.2010.2095072

threshold of sparse graph codes. Recall that the BP threshold
is the threshold of the “locally optimum” BP message-passing
algorithm. As such it has low complexity. The MAP threshold,
on the other hand, is the threshold of the “globally optimum”
decoder. No decoder can do better, but the complexity of the
MAP decoder is in general high. The threshold itself is the
unique channel parameter so that for channels with lower
(better) parameter decoding succeeds with high probability
(for large instances) whereas for channels with higher (worse)
parameters decoding fails with high probability. Surprisingly,
for sparse graph codes there is a connection between these two
thresholds; see [1] and [2].1

We discuss a fundamental mechanism, which ensures that
these two thresholds coincide (or at least are very close). We call
this phenomenon “threshold saturation via spatial coupling.” A
prime example where this mechanism is at work are convolu-
tional low-density parity-check (LDPC) ensembles.

It was Tanner who introduced the method of “unwrapping”
a cyclic block code into a convolutional structure [3], [4]. The
first low-density convolutional ensembles were introduced by
Felström and Zigangirov [5]. Convolutional LDPC ensembles
are constructed by coupling several standard -regular
LDPC ensembles together in a chain. Perhaps surprisingly, due
to the coupling, and assuming that the chain is finite and prop-
erly terminated, the threshold of the resulting ensemble is con-
siderably improved. Indeed, if we start with a -regular en-
semble, then on the binary erasure channel (BEC) the threshold
is improved from to roughly

(the capacity for this case is ). The latter number is the
MAP threshold of the underlying -regular
ensemble. This opens up an entirely new way of constructing
capacity-approaching ensembles. It is a folk theorem that for
standard constructions improvements in the BP threshold go
hand in hand with increases in the error floor. More precisely, a
large fraction of degree-two variable nodes is typically needed
in order to get large thresholds under BP decoding. Unfortu-
nately, the higher the fraction of degree-two variable nodes, the
more low-weight codewords (small cycles, small stopping sets,
etc.) appear. Under MAP decoding on the other hand these two

1There are some trivial instances in which the two thresholds coincide. This
is, e.g., the case for so-called “cycle ensembles” or, more generally, for irreg-
ular LDPC ensembles that have a large fraction of degree-two variable nodes.
In these cases, the reason for this agreement is that for both decoders the perfor-
mance is dominated by small structures in the graph. But for general ensembles
these two thresholds are distinct and, indeed, they can differ significantly.
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quantities are positively correlated. To be concrete, if we con-
sider the sequence of -regular ensembles of rate one-
half, by increasing we increase both the MAP threshold as
well as the typical minimum distance. It is therefore possible
to construct ensembles that have large MAP thresholds and low
error floors.

The potential of convolutional LDPC codes has long been
recognized. Our contribution lies therefore not in the introduc-
tion of a new coding scheme, but in clarifying the basic mecha-
nism that make convolutional-like ensembles perform so well.

There is a considerable literature on convolutional-like LDPC
ensembles. Variations on the constructions as well as some anal-
ysis can be found in [6]–[9]. In [10] and [11], Sridharan et al.
consider density evolution (DE) for convolutional LDPC en-
sembles and determine thresholds for the BEC. The equiva-
lent observations for general channels were reported by Lent-
maier et al. [11], [12]. The preceding two sets of works are
perhaps the most pertinent to our setup. By considering the
resulting thresholds and comparing them to the thresholds of
the underlying ensembles under MAP decoding (see, e.g., [13])
it becomes quickly apparent that an interesting physical effect
must be at work. Indeed, in a recent paper [14], Lentmaier and
Fettweis followed this route and independently formulated the
equality of the BP threshold of convolutional LDPC ensembles
and the MAP threshold of the underlying ensemble as a conjec-
ture. They attribute this numerical observation to G. Liva.

A representation of convolutional LDPC ensembles in terms
of a protograph was introduced by Mitchell et al. [15]. The cor-
responding representation for terminated convolutional LDPC
ensembles was introduced by Lentmaier et al. [16]. A pseu-
docodeword analysis of convolutional LDPC codes was per-
formed by Smarandache et al. [17], [18]. In [19], Papaleo et al.
consider windowed decoding of convolutional LDPC codes on
the BEC to study the tradeoff between the decoding latency and
the code performance.

In what follows, we will assume that the reader is familiar
with basic notions of sparse graph codes and message-passing
decoding, and in particular with the asymptotic analysis of
LDPC ensembles for transmission over the BEC as it was
accomplished in [20]. We summarized the most important
facts that are needed for our proof in Section III-A, but this
summary is not meant to be a gentle introduction to the topic.
Our notation follows for the most part the one in [13].

II. CONVOLUTIONAL-LIKE LDPC ENSEMBLES

The principle that underlies the good performance of convo-
lutional-like LDPC ensembles is very broad and there are many
degrees of freedom in constructing such ensembles. In what fol-
lows, we introduce two basic variants. The -ensemble
is very close to the ensemble discussed in [16]. Experimentally,
it has a very good performance. We conjecture that it is capable
of achieving capacity.

We also introduce the ensemble . Experimen-
tally, it shows a worse tradeoff between rate, threshold, and
blocklength. But it is easier to analyze and we will show that
it is capacity achieving. One can think of as a “smoothing pa-
rameter” and we investigate the behavior of this ensemble when

tends to infinity.

Fig. 1. Protograph of a standard ��� ��-regular ensemble.

Fig. 2. A chain of ������ protographs of the standard �����-regular ensem-
bles for � � 	. These protographs do not interact.

A. The Ensemble

To start, consider a protograph of a standard -regular
ensemble (see [21] and [22] for the definition of protographs).
It is shown in Fig. 1. There are two variable nodes and there is
one check node. Let denote the number of variable nodes at
each position. For our example, means that we have
50 copies of the protograph so that we have 100 variable nodes
at each position. For all future discussions, we will consider the
regime where tends to infinity.

Next, consider a collection of such protographs as
shown in Fig. 2. These protographs are noninteracting and so
each component behaves just like a standard -regular com-
ponent. In particular, the BP threshold of each protograph is just
the standard threshold, call it (see Lemma
4 for an analytic characterization of this threshold). Slightly
more generally: start with an -regular ensemble
where is odd so that .

An interesting phenomenon occurs if we couple these compo-
nents. To achieve this coupling, connect each protograph to 2

protographs “to the left” and to protographs “to the right.”
This is shown in Fig. 3 for the two cases
and . In this figure, extra check nodes are
added on each side to connect the “overhanging” edges at the
boundary.

There are two main effects resulting from this coupling.
1) Rate reduction: Recall that the design rate of the un-

derlying standard -regular ensemble is
. Let us determine the design rate of the

corresponding ensemble. By design
rate we mean here the rate that we get if we assume that
every involved check node imposes a linearly indepen-
dent constraint.
The variable nodes are indexed from to so that
in total there are variable nodes. The check

2If we think of this as a convolutional code, then � 
� is the syndrome former
memory of the code.
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Fig. 3. Two coupled chains of protographs with � � � and �� � �� � � ��
(top) and � � � and �� � �� � � �	� (bottom), respectively.

nodes are indexed from to , so that in
total there are check nodes. We see
that, due to boundary effects, the design rate is reduced
to

where the first term on the right-hand side represents
the design rate of the underlying standard

-regular ensemble and the second term represents
the rate loss. As we see, this rate reduction effect van-
ishes at a speed .

2) Threshold increase: The threshold changes dra-
matically from to something close to

(the MAP threshold of the underlying
standard -regular ensemble; see Lemma 4). This
phenomenon (which we call “threshold saturation”) is
much less intuitive and it is the aim of this paper to
explain why this happens.

So far we have considered -regular ensembles.
Let us now give a general definition of the -ensemble
that works for all parameters so that is odd. Rather
than starting from a protograph, place variable nodes at posi-
tions . At each position there are such variable nodes.
Place check nodes at each position . Con-
nect exactly one of the edges of each variable node at position

to a check node at position .
Note that at each position , there are

exactly check node sockets.3 Exactly of

those come from variable nodes at each position

3Sockets are connection points where edges can be attached to a node. For
example, if a node has degree � then we imagine that it has three sockets. This
terminology arises from the so-called configuration model of LDPC ensembles.
In this model, we imagine that we label all check-node sockets and all variable-
node sockets with the set of integers from one to the cardinality of the sockets.
To construct then a particular element of the ensemble we pick a permutation
on this set uniformly at random from the set of all permutations and connect
variable-node sockets to check-node sockets according to this permutation.

. For check nodes at the boundary the number of sockets is
decreased linearly according to their position. The probability
distribution of the ensemble is defined by choosing a random
permutation on the set of all edges for each check node position.

The next lemma, whose proof can be found in Appendix I,
asserts that the minimum stopping set distance of most codes
in this ensemble is at least a fixed fraction of . With respect
to the technique used in the proof we follow the lead of [15],
[18] and [17], [22] that consider distance and pseudodistance
analysis of convolutional LDPC ensembles, respectively.

Lemma 1 (Stopping Set Distance of -Ensemble):
Consider the -ensemble with , ,
and . Define

Let denote the unique strictly positive solution of the equation
and let . Then, for any

where denotes the minimum stopping set distance of the
code .

Discussion: The quantity is the relative weight
(normalized to the blocklength) at which the exponent of the
expected stopping set distribution of the underlying standard

-regular ensemble becomes positive. It is perhaps not
too surprising that the same quantity also appears in our con-
text. The lemma asserts that the minimum stopping set distance
grows linearly in . But the stated bound does not scale with

. We leave it as an interesting open problem to determine
whether this is due to the looseness of our bound or whether
our bound indeed reflects the correct behavior.

Example 2 : An explicit calcu-
lation shows that and . Let

be the blocklength. If we assume that
, , then . Lemma 1

asserts that the minimum stopping set distance grows in the
blocklength at least as .

B. The Ensemble

In order to simplify the analysis we modify the ensemble
by adding a randomization of the edge connections.
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For the remainder of this paper we always assume that ,
so that the ensemble has a nontrivial design rate.

We assume that the variable nodes are at positions ,
. At each position there are variable nodes, .

Conceptually, we think of the check nodes to be located at all
integer positions from . Only some of these positions
actually interact with the variable nodes. At each position there
are check nodes. It remains to describe how the connec-
tions are chosen.

Rather than assuming that a variable at position has exactly
one connection to a check node at position ,
we assume that each of the connections of a variable node
at position is uniformly and independently chosen from the
range , where is a “smoothing” parameter.
In the same way, we assume that each of the connections of a
check node at position is independently chosen from the range

. We no longer require that is odd.
More precisely, the ensemble is defined as follows. Con-

sider a variable node at position . The variable node has
outgoing edges. A type is a -tuple of nonnegative integers,

, so that . The operational
meaning of is that the variable node has edges that connect
to a check node at position . There are types. As-
sume that for each variable we order its edges in an arbitrary but
fixed order. A constellation is an -tuple,
with elements in . Its operational significance is that
if a variable node at position has constellation then its th
edge is connected to a check node at position . Let
denote the type of a constellation. Since we want the position
of each edge to be chosen independently we impose a uniform
distribution on the set of all constellations. This imposes the
following distribution on the set of all types. We assign the
probability

Pick so that is a natural number for all types . For
each position pick variables that have their edges as-
signed according to type . Further, use a random permutation
for each variable, uniformly chosen from the set of all permuta-
tions on letters, to map a type to a constellation.

Under this assignment, and ignoring boundary effects, for
each check position , the number of edges that come from vari-
ables at position , , is . In other words,
it is exactly a fraction of the total number of sockets at
position . At the check nodes, distribute these edges according
to a permutation chosen uniformly at random from the set of all
permutations on letters, to the check nodes at this
position. It is then not very difficult to see that, under this dis-
tribution, for each check node each edge is roughly indepen-
dently chosen to be connected to one of its nearest “left”
neighbors. Here, “roughly independent” means that the corre-
sponding probability deviates at most by a term of order
from the desired distribution. As discussed beforehand, we will
always consider the limit in which first tends to infinity and
then the number of iterations tends to infinity. Therefore, for any
fixed number of rounds of DE the probability model is exactly
the independent model described above.

Lemma 3 (Design Rate): The design rate of the ensemble
, with , is given by

Proof: Let be the number of variable nodes and be
the number of check nodes that are connected to at least one
of these variable nodes. Recall that we define the design rate as

.
There are variables in the graph. The check

nodes that have potential connections to variable nodes in the
range are indexed from to . Consider the

check nodes at position . Each of the edges of each
such check node is chosen independently from the range

. The probability that such a check node has at least
one connection in the range is equal to .
Therefore, the expected number of check nodes at position
that are connected to the code is equal to .
In a similar manner, the expected number of check nodes at po-
sition , , that are connected to the code
is equal to . All check nodes at posi-
tions are connected. Further, by symmetry,
check nodes in the range have an identical
contribution as check nodes in the range .
Summing up all these contributions, we see that the number of
check nodes, which are connected, is equal to

Discussion: In the above lemma, we have defined the de-
sign rate as the normalized difference of the number of variable
nodes and the number of check nodes that are involved in the
ensemble. This leads to a relatively simple expression, which is
suitable for our purposes. But in this ensemble there is a nonzero
probability that there are two or more degree-one check nodes
attached to the same variable node. In this case, some of these
degree-one check nodes are redundant and do not impose con-
straints. This effect only happens for variable nodes close to the
boundary. Since we consider the case where tends to infinity,
this slight difference between the “design rate” and the “true
rate” does not play a role. We therefore opt for this simple defi-
nition. The design rate is a lower bound on the true rate.

C. Other Variants

There are many variations on the theme that show the same
qualitative behavior. For real applications these and possibly
other variations are vital to achieve the best tradeoffs. Let us
give a few select examples.

1) Diminished rate loss: One can start with a cycle (as is the
case for tailbiting codes) rather than a chain so that some
of the extra check nodes, which we add at the boundary,
can be used for the termination on both sides. This re-
duces the rate loss.

2) Irregular and structured ensembles: We can start with
irregular or structured ensembles. Arrange a number
of graphs next to each other in a horizontal order.
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Couple them by connecting neighboring graphs up to
some order. Empirically, once the coupling is “strong”
enough and spreads out sufficiently, the threshold is
“very close” to the MAP threshold of the underlying
ensembles. See also [23] for a study of such ensembles.

The main aim of this paper is to explain why coupled LDPC
codes perform so well rather than optimizing the ensemble.
Therefore, despite the practical importance of these variations,
we focus on the ensemble . It is the simplest to
analyze.

III. GENERAL PRINCIPLE

As mentioned before, the basic reason why coupled ensem-
bles have such good thresholds is that their BP threshold is very
close to the MAP threshold of the underlying ensemble. There-
fore, as a starting point, let us review how the BP and the MAP
threshold of the underlying ensemble can be characterized. A
detailed explanation of the following summary can be found in
[13].

A. The Standard -Regular Ensemble: BP Versus MAP

Consider DE of the standard -regular ensemble. More
precisely, consider the fixed point (FP) equation

(1)

where is the channel erasure value and is the average era-
sure probability flowing from the variable node side to the check
node side. Both the BP as well as the MAP threshold of the

-regular ensemble can be characterized in terms of solu-
tions (FPs) of this equation.

Lemma 4 (Analytic Characterization of Thresholds): Con-
sider the -regular ensemble. Let denote its
BP threshold and let denote its MAP threshold.
Define

Let be the unique positive solution of the equation
and let be the unique positive solution of

the equation . Then, and
. We remark that above, for ease of

notation, we drop the dependence of and on and
.

Example 5 (Thresholds of (3, 6)-Ensemble): Explicit com-
putations show that and

.

Lemma 6 (Graphical Characterization of Thresholds): The
left-hand side of Fig. 4 shows the so-called extended BP (EBP)
EXIT curve associated to the -regular ensemble. This is
the curve given by , . For
all regular ensembles with this curve has a characteristic

Fig. 4. Left: The EBP EXIT curve � of the �� � �� � � ��-regular
ensemble. The curve goes “outside the box” at the point ��� � ���� and tends
to infinity. Right: The BP EXIT function � ���. Both the BP as well as the
MAP threshold are determined by � ���.

“C” shape. It starts at the point for and then moves
downwards until it “leaves” the unit box at the point
and extends to infinity. The right-hand side of Fig. 4 shows the
BP EXIT curve (dashed line). It is constructed from the EBP
EXIT curve by “cutting off” the lower branch and by completing
the upper branch via a vertical line.

The BP threshold is the point at which this
vertical line hits the -axis. In other words, the BP threshold

is equal to the smallest -value, which is taken on
along the EBP EXIT curve.

Lemma 7 (Lower Bound on ): For the -regular
ensemble

Proof: Consider the polynomial . Note
that

for . Since
, the positive

root of is a lower bound on the positive root of .

But the positive root of is at .

This in turn is lower bounded by .
To construct the MAP threshold , integrate the

BP EXIT curve starting at until the area under this curve is
equal to the design rate of the code. The point at which equality
is achieved is the MAP threshold (see the right-hand side of
Fig. 4).

Lemma 8 (MAP Threshold for Large Degrees): Consider the
-regular ensemble. Let denote the

design rate so that . Then, for fixed and increasing,
the MAP threshold converges exponentially fast
(in ) to .

Proof: Recall that the MAP threshold is determined by the
unique positive solution of the polynomial equation

, where is given in Lemma 4. A closer look at this
equation shows that this solution has the form
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We see that the root converges exponentially fast (in ) to .
Further, in terms of this root we can write the MAP threshold as

Lemma 9 (Stable and Unstable FPs [13]): Consider the stan-
dard -regular ensemble with . Define

(2)

Then, for , there are exactly two strictly
positive solutions of the equation and they are both in
the range .

Let be the larger of the two and let be the smaller
of the two. Then, is a strictly increasing function in and

is a strictly decreasing function in . Finally,
.

Discussion: Recall that represents the change of the era-
sure probability of DE in one iteration, assuming that the system
has current erasure probability . This change can be negative
(erasure probability decreases), it can be positive, or it can be
zero (i.e., there is an FP). We discuss some useful properties of

in Appendix II.

As the notation indicates, corresponds to a stable FP
whereas corresponds to an unstable FP. Here stability
means that if we initialize DE with the value for a
sufficiently small then DE converges back to .

B. The Ensemble

Consider the EBP EXIT curve of the ensemble.
To compute this curve we proceed as follows. We fix a desired
“entropy” value (see Definition 15), call it . We initialize DE
with the constant . We then repeatedly perform one step of DE,
where in each step we fix the channel parameter in such a way
that the resulting entropy is equal to . This is equivalent to the
procedure introduced in [24, Sec. VIII], to compute the EBP
EXIT curve for general binary-input memoryless output-sym-
metric channels. Once the procedure has converged, we plot its
EXIT value versus the resulting channel parameter. We then re-
peat the procedure for many different entropy values to produce
a whole curve.

Note that DE here is not just DE for the underlying ensemble.
Due to the spatial structure we in effect deal with a multiedge
ensemble [25] with many edge types. For our current casual
discussion the exact form of the DE equations is not important,
but if you are curious please fast forward to Section V.

Why do we use this particular procedure? By using forward
DE, one can only reach stable FPs. But the above procedure
allows one to find points along the whole EBP EXIT curve, i.e.,
one can in particular also produce unstable FPs of DE.

The resulting curve is shown in Fig. 5 for various values of .
Note that these EBP EXIT curves show a dramatically different
behavior compared to the EBP EXIT curve of the underlying en-
semble. These curves appear to be “to the right” of the threshold

. For small values of one might be led
to believe that this is true since the design rate of such an en-
semble is considerably smaller than . But even for large

Fig. 5. EBP EXIT curves of the ensemble �� � �� � � �� ��
for � � �� �� �� 	� ��������� and ��	. The BP/MAP thresholds are
� ��� �� �� � 
�����
��
�	�
�	�, � ����� �� �

�
	�	���
���	�
�, � ����� �� � 
�
��
���
�
���
	,
� ��� �� 	� � 
��		�
��
�
��
��, � ����� ��� �

��		�
��
�


	��, � ����� ��� � 
��		�
��
�������,
� ��� �� ��� � 
��		�
��
����

�, � ����� ��	� �

��		�
��
��	����. The light/dark gray areas mark the interior of
the BP/MAP EXIT function of the underlying ��� ��-regular ensemble,
respectively.

Fig. 6. EBP EXIT curve for the �� � �� � � �� � � ��� ensemble. The
circle shows a magnified portion of the curve. The horizontal magnification is
�
 , and the vertical one is �.

values of , where the rate of the ensemble is close to ,
this dramatic increase in the threshold is still true. Empirically,
we see that, for increasing, the EBP EXIT curve approaches
the MAP EXIT curve of the underlying -reg-
ular ensemble. In particular, for the EBP
EXIT curve drops essentially vertically until it hits zero. We will
see that this is a fundamental property of this construction.

C. Discussion

A look at Fig. 5 might convey the impression that the tran-
sition of the EBP EXIT function is completely flat and that
the threshold of the ensemble is exactly equal to
the MAP threshold of the underlying -regular ensemble
when tends to infinity.

Unfortunately, the actual behavior is more subtle. Fig. 6
shows the EBP EXIT curve for with a small section
of the transition greatly magnified. As one can see from this
magnification, the curve is not flat but exhibits small “wiggles”
in around . These wiggles do not vanish as
tends to infinity but their width remains constant. As we will
discuss in much more detail later, area considerations imply
that, in the limit as diverges to infinity, the BP threshold is
slightly below . Although this does not play a role
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Fig. 7. EBP EXIT curve for the �� � �� � � �� � � ����� ensemble.
Left: � � �. The circle shows a magnified portion of the curve. The horizontal
magnification is �� , and the vertical one is �. Right: � � �. The circle shows
a magnified portion of the curve. The horizontal magnification is �� , and the
vertical one is �.

in the remainder of the paper, let us remark that the number of
wiggles is (up to a small additive constant) equal to .

Where do these wiggles come from? They stem from the fact
that the system is discrete. If, instead of considering a system
with sections at integer points, we would deal with a continuous
system where neighboring ”sections” are infinitesimally close,
then these wiggles would vanish. This “discretization” effect is
well known in the physics literature. By letting tend to infinity
we can in effect create a continuous system. This is in fact our
main motivation for introducing this parameter.

Empirically, these wiggles are very small (e.g., they are of
width for the ensemble), and further,
these wiggles tend to when is increased. Unfortunately this
is hard to prove.

We therefore study the ensemble . The wiggles
for this ensemble are in fact larger; see, e.g., Fig. 7. But, as men-
tioned above, the wiggles can be made arbitrarily small by let-
ting (the smoothing parameter) tend to infinity. For example,
in the left-hand side of Fig. 7, , whereas in the right-hand
side, we have . We see that the wiggle size has decreased
by more than a factor of .

IV. MAIN STATEMENT AND INTERPRETATION

As pointed out in the introduction, numerical experiments
indicate that there is a large class of convolutional-like LDPC
ensembles that all have the property that their BP threshold is
“close” to the MAP threshold of the underlying ensemble. Un-
fortunately, no general theorem is known to date that states when
this is the case. The following theorem gives a particular in-
stance of what we believe to be a general principle. The bounds
stated in the theorem are loose and can likely be improved con-
siderably. Throughout the paper we assume that .

A. Main Statement

Theorem 10 (BP Threshold of the Ensemble):
Consider transmission over the using random elements
from the ensemble . Let denote
the BP threshold and let denote the design rate
of this ensemble.

Then, in the limit as tends to infinity, and for

we have

(3)

(4)

In the limit as , , and (in that order) tend to infinity

(5)

(6)

Discussion:
1) The lower bound on is the main re-

sult of this paper. It shows that, up to a term, which
tends to zero when tends to infinity, the threshold of
the chain is equal to the MAP threshold of the under-
lying ensemble. The statement in the theorem is weak.
As we discussed earlier, the convergence speed with re-
spect to (w.r.t.) is most likely exponential. We prove
only a convergence speed of . We pose it as an open
problem to improve this bound. We also remark that, as
seen in (6), the MAP threshold of the en-
semble tends to for any finite when
tends to infinity, whereas the BP threshold is bounded
away from for any finite .

2) We right away prove the upper bound on
. For the purpose of our proof,

we first consider a “circular” ensemble. This ensemble
is defined in an identical manner as the
ensemble except that the positions are now from
to and index arithmetic is performed modulo

. This circular ensemble has design rate equal to
. Set . The original ensemble is

recovered by setting any consecutive positions to
zero. We first provide a lower bound on the conditional
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entropy for the circular ensemble when transmitting
over a BEC with parameter . We then show that setting

sections to , does not significantly decrease this
entropy. Overall this gives an upper bound on the MAP
threshold of the original ensemble.
It is not hard to see that the BP EXIT curve4 is the
same for both the -regular ensemble and the
circular ensemble. Indeed, the forward DE (see Def-
inition 13) converges to the same FP for both ensem-
bles. Consider the -regular ensemble and let

. The conditional entropy when
transmitting over a BEC with parameter is at least
equal to minus the area under the BP EXIT
curve between (see [13, Th. 3.120]). Call this area

. Here, the entropy is normalized by , where
is the length of the circular ensemble and denotes

the number of variable nodes per section. Assume now
that we set consecutive sections of the circular
ensemble to 0 in order to recover the original ensemble.
As a consequence, we “remove” an entropy (degrees of
freedom) of at most from the circular system.
The remaining entropy is therefore positive (and hence
we are above the MAP threshold of the circular en-
semble) as long as .
Thus, the MAP threshold of the circular ensemble
is given by the supremum over all such that

. Now note that
, so that the above condi-

tion becomes .
But the BP EXIT curve is an increasing function in
so that

. We get the stated
upper bound on by lower bounding

by .
3) According to Lemma 3,

. This immediately im-
plies the limit (5). The limit for the BP threshold

follows from (4).
4) According to Lemma 8, the MAP threshold

of the underlying ensemble quickly
approaches the Shannon limit. We therefore see
that convolutional-like ensembles provide a way
of approaching capacity with low complexity.
For example, for a rate equal to one-half, we
get ,

,
, ,

.

B. Proof Outline

The proof of the lower bound in Theorem 10 is long. We
therefore break it up into several steps. Let us start by discussing
each of the steps separately. This hopefully clarifies the main
ideas. But it will also be useful later when we discuss how the
main statement can potentially be generalized. We will see that

4The BP EXIT curve is the plot of the extrinsic estimate of the BP decoder
versus the channel erasure fraction (see [13] for details).

Fig. 8. Unimodal FP of the �� � �� � � �� � � ���� � �� ensemble with
small values towards the boundary, a fast transition, and essentially constant
values in the middle.

some steps are quite generic, whereas other steps require a rather
detailed analysis of the particular chosen system.

1) Existence of FP: “The” key to the proof is to show the
existence of a unimodal FP , which takes on an
essentially constant value in the “middle,” has a fast
“transition,” and has arbitrarily small values towards the
boundary (see Definition 12). Fig. 8 shows a typical such
example. We will see later that the associated channel
parameter of such an FP, , is necessarily very close to

.
2) Construction of EXIT curve: Once we have established

the existence of such a special FP we construct from it a
whole FP family. The elements in this family of FPs look
essentially identical. They differ only in their “width.”
This width changes continuously, initially being equal
to roughly until it reaches zero. As we will see,
this family “explains” how the overall constellation (see
Definition 12) collapses once the channel parameter has
reached a value close to : starting from the
two boundaries, the whole constellation “moves in” like
a wave until the two wave ends meet in the middle. The
EBP EXIT curve is a projection of this wave (by com-
puting the EXIT value of each member of the family).
If we look at the EBP EXIT curve, this phenomenon
corresponds to the very steep vertical transition close to

.
Where do the wiggles in the EBP EXIT curve come
from? Although the various FPs look “almost” identical
(other than the place of the transition) they are not ex-
actly identical. The value changes very slightly (around

). The larger we choose the smaller we can make the
changes (at the cost of a longer transition).
When we construct the above family of FPs it is math-
ematically convenient to allow the channel parameter
to depend on the position. Let us describe this in more
detail.
We start with a special FP as depicted in Fig. 8. From
this we construct a smooth family , param-
eterized by , , where and where

. The components of the vector are essen-
tially constants (for fixed). The possible exceptions are
components towards the boundary. We allow those com-
ponents to take on larger (than in the middle) values.
From the family we derive an EBP EXIT
curve and we then measure the area enclosed by this
curve. We will see that this area is close to the design
rate. From this we will be able to conclude that

.
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3) Operational meaning of EXIT curve: We next show that
the EBP EXIT curve constructed in step 2) has an opera-
tional meaning. More precisely, we show that if we pick
a channel parameter sufficiently below then forward
DE converges to the trivial FP.

4) Putting it all together: The final step is to combine
all the constructions and bounds discussed in the pre-
vious steps to show that converges to

when and tend to infinity.

V. PROOF OF THEOREM 10

This section contains the technical details of Theorem 10.
We accomplish the proof by following the steps outlined in the
previous section. To enhance the readability of this section we
have moved some of the long proofs to Appendixes I–V.

A. Step 1): Existence of FP

Definition 11 (DE of Ensemble): Let ,
, denote the average erasure probability, which is emitted by

variable nodes at position . For we set . For
the FP condition implied by DE is

(7)

If we define

(8)

then (7) can be rewritten as

In what follows, it will be handy to have an even shorter form
for the right-hand side of (7). Therefore, let

(9)

Note that

where the right-hand side represents DE for the underlying
-regular ensemble.

The function defined in (8) is decreasing
in all its arguments , . In what
follows, it is understood that . The channel parameter

is allowed to take values in .

Definition 12 (FPs of DE): Consider DE for the
ensemble. Let . We call the constellation.
We say that forms an FP of DE with parameter if fulfills

(7) for . As a short hand we then say that is an
FP. We say that is a non-trivial FP if is not identically
zero. More generally, let

where for . We say that forms an FP if

(10)

Definition 13 (Forward DE and Admissible Schedules): Con-
sider DE for the ensemble. More precisely, pick
a parameter . Initialize . Let be
the result of rounds of DE. For example, is generated
from by applying the DE (7) to each section

We call this the parallel schedule.

More generally, consider a schedule in which in each step an
arbitrary subset of the sections is updated, constrained only by
the fact that every section is updated in infinitely many steps. We
call such a schedule admissible. Again, we call the resulting
sequence of constellations.

In what follows, we will refer to this procedure as forward DE
by which we mean the appropriate initialization and the subse-
quent DE procedure. For example, in the next lemma we will
discuss the FPs, which are reached under forward DE. These
FPs have special properties and so it will be convenient to be
able to refer to them in a succinct way and to be able to distin-
guish them from general FPs of DE.

Lemma 14 (FPs of Forward DE): Consider forward DE for
the ensemble. Let denote the sequence of con-
stellations under an admissible schedule. Then converges to
an FP of DE and this FP is independent of the schedule. In par-
ticular, it is equal to the FP of the parallel schedule.

Proof: Consider first the parallel schedule. We claim that
the vectors are ordered, i.e., (the
ordering is pointwise). This is true since ,
whereas . It now follows
by induction on the number of iterations that the sequence
is monotonically decreasing.

Since the sequence is also bounded from below it con-
verges. Call the limit . Since the DE equations are contin-
uous it follows that is an FP of DE (7) with parameter .
We call the forward FP of DE.

That the limit (exists in general and that it) does not depend
on the schedule follows by standard arguments and we will be
brief. The idea is that for any two admissible schedules the cor-
responding computation trees are nested. This means that if we
look at the computation graph of schedule let us say one at time

then there exists a time so that the computation graph under
schedule is a superset of the first computation graph. To be
able to come to this conclusion we have crucially used the fact
that for an admissible schedule every section is updated infin-
itely often. This shows that the performance under schedule is
at least as good as the performance under schedule . The con-
verse claim, and hence equality, follows by symmetry.
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Definition 15 (Entropy): Let be a constellation. We define
the (normalized) entropy of to be

Discussion: More precisely, we should call the average
message entropy. But we will stick with the shorthand entropy
in the remainder of the paper.

Lemma 16 (Nontrivial FPs of Forward DE): Consider the
ensemble . Let be the FP of forward DE for the

parameter . For and , if

(11)

then .
Proof: Let be the design rate of the

ensemble as stated in Lemma 3. Note that the
design rate is a lower bound on the actual rate. It follows that
the system has at least degrees of
freedom. If we transmit over a channel with parameter then
in expectation at most of these degrees of
freedom are resolved. Recall that we are considering the limit
in which diverges to infinity. Therefore, we can work with
averages and do not need to worry about the variation of the
quantities under consideration. It follows that the number of
degrees of freedom left unresolved, measured per position and
normalized by , is at least .

Let be the forward DE FP corresponding to parameter .
Recall that is the average message, which flows from a vari-
able at position towards the check nodes. From this we can
compute the corresponding probability that the node value at

position has not been recovered. It is equal to

. Clearly, the BP decoder cannot be better than the
MAP decoder. Further, the MAP decoder cannot resolve the un-
known degrees of freedom. It follows that we must have

Note that so that . We conclude that

Assume that we want a constellation with entropy at least .
Using the expression for from Lemma 3, this
leads to the inequality

(12)

Fig. 9. A proper one-sided FP ��� �� for the ensemble �� � �� � � �� � �
���� � ��, where � � ���		�
�. As we will discuss in Lemma 23, for suf-
ficiently large �, the maximum value of �, namely � , approaches the stable
value � ���. Further, as discussed in Lemma 26, the width of the transition is
of order � , where 	 
 � is a parameter that indicates, which elements of
the constellation we want to include in the transition.

Solving for and simplifying the inequality by upper bounding
by and lower bounding by leads

to (11).

Not all FPs can be constructed by forward DE. In particular,
one can only reach (marginally) “stable” FPs by the above pro-
cedure. Recall from Section IV-B, step 1), that we want to con-
struct an unimodal FP, which “explains” how the constellation
collapses. Such an FP is by its very nature unstable.

It is difficult to prove the existence of such an FP by direct
methods. We therefore proceed in stages. We first show the ex-
istence of a “one-sided” increasing FP. We then construct the
desired unimodal FP by taking two copies of the one-sided FP,
flipping one copy, and gluing these FPs together.

Definition 17 (One-Sided DE): Consider the tuple
. The FP condition implied by one-sided DE

is equal to (7) with for and for .

Definition 18 (FPs of One-Sided DE): We say that is a
one-sided FP (of DE) with parameter and length if (7) is
fulfilled for , with for and
for .

In the same manner as we have done this for two-sided FPs,
if , then we define one-sided FPs with respect
to .

We say that is nondecreasing if for
.

Definition 19 (Entropy): Let be a one-sided . We define
the (normalized) entropy of to be

Definition 20 (Proper One-Sided FPs): Let be a non-
trivial and nondecreasing one-sided FP. As a short hand, we
then say that is a proper one-sided FP.

A proper one-sided FP is shown in Fig. 9.

Definition 21 (One-Sided Forward DE and Schedules): Sim-
ilar to Definition 13, one can define the one-sided forward DE
by initializing all sections with and by applying DE according
to an admissible schedule.

Lemma 22 (FPs of One-Sided Forward DE): Consider an
ensemble and let . Let

and let denote the result of applying steps of one-sided
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forward DE according to an admissible schedule (cf., Defini-
tion 21). Then, we have the following.

1) converges to a limit, which is an FP of one-sided
DE. This limit is independent of the schedule and the
limit is either proper or trivial. As a short hand we say
that is a one-sided FP of forward DE.

2) For and , if

fulfills (11) then .
Proof: The existence of the FP and the independence of the

schedule follows along the same line as the equivalent statement
for two-sided FPs in Lemma 14. We hence skip the details. As-
sume that this limit is nontrivial. We want to show that it
is proper. This means we want to show that it is nondecreasing.
We use induction. The initial constellation is nondecreasing. Let
us now show that this property stays preserved in each step of
DE if we apply a parallel schedule. More precisely, for any sec-
tion

where follows from the monotonicity of and the in-
duction hypothesis that is nondecreasing.

Let us now show that for and

, if fulfills (11) then .
First, recall from Lemma 16 that the corresponding two-sided
FP of forward DE has entropy at least under the stated
conditions. Now compare one-sided and two-sided DE for the
same initialization with the constant value and the parallel
schedule. We claim that for any step the values of the one-sided
constellation at position , , are larger than or equal
to the values of the two-sided constellation at the same position
. To see this we use induction. The claim is trivially true for

the initialization. Assume therefore that the claim is true at a
particular iteration . For all points it is then
trivially also true in iteration , using the monotonicity of
the DE map. For points , recall that the one
sided DE “sees” the value for all positions , , and that

is the largest of all -values. For the two-sided DE on the
other hand, by symmetry, for all . Again
by monotonicity, we see that the desired conclusion holds.

To conclude the proof, note that if for a unimodal two-sided
constellation we compute the average over the positions
then we get at least as large a number as if we compute it over the
whole length . This follows since the value at position
is maximal.

Let us establish some basic properties of proper one-sided
FPs.

Lemma 23 (Maximum of FP): Let , , be a
proper one-sided FP of length . Then, and

where and denote the stable and unstable nonzero
FP associated to , respectively.

Proof: We start by proving that . Assume
to the contrary that . Then

a contradiction. Here, the last step follows since
and .

Let us now consider the claim that .
The proof follows along a similar line of arguments. Since

, both and exist and are strictly
positive. Suppose that or that . Then

a contradiction.
A slightly more careful analysis shows that , so that

in fact we have strict inequality, namely . We
skip the details.

Lemma 24 (Basic Bounds on FP): Let be a proper one-
sided FP of length . Then, for all

i)

ii)

iii)

iv)

Proof: We have

Let , . Since
, is convex. Let

. We have

Since is convex, using Jensen’s inequality, we obtain

which proves claim i).
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The derivation of the remaining inequalities is based on the
following identity:

(13)

For this gives rise to the following inequalities:

(14)

(15)

(16)

Let , so that
[recall the definition of from (8)]. Using (15), this proves
iii)

If we use (16) instead then we get ii). To prove iv), we use (14)

Since is increasing, .
Hence

Lemma 25 (Spacing of FP): Let , , be a proper
one-sided FP of length . Then for

Let denote the weighted average .
Then, for any

Proof: Represent both as well as in terms of the
DE (10). Taking the difference

(17)

Apply the identity

(18)

where we set

Note that . Thus

In step i), we used the fact that implies
for all , so that . In step ii), we made the
substitution . Since ,

. Thus

Consider the term . Set and

, where and

. Note that , .
Using again (18)
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Explicitly

which gives us the desired upper bound. By setting all ,
we obtain the second, slightly weaker, form.

To bound the spacing for the weighted averages, we write
and explicitly

The proof of the following lemma is long. Hence we relegate
it to Appendix III.

Lemma 26 (Transition Length): Let . Let ,
, be a proper one-sided FP of length . Then, for all

where is a strictly positive constant independent of
and .

Let us now show how we can construct a large class of one-
sided FPs, which are not necessarily stable. In particular, we will
construct increasing FPs. The proof of the following theorem is
relegated to Appendix IV.

Theorem 27 (Existence of One-Sided FPs): Fix the param-
eters and let . Let ,
where

There exists a proper one-sided FP of length that either has
entropy and channel parameter bounded by

or has entropy bounded by

and channel parameter .

Discussion: We will soon see that, for the range of parame-
ters of interest, the second alternative is not possible either. In
the light of this, the previous theorem asserts for this range of
parameters the existence of a proper FP of entropy . In what
follows, this FP will be the key ingredient to construct the whole
EXIT curve.

B. Step 2): Construction of EXIT Curve

Definition 28 [EXIT Curve for -Ensemble]: Let
, , denote a proper one-sided FP of length

and entropy . Fix .

The interpolated family of constellations based on is
denoted by . It is indexed from to .

This family is constructed from the one-sided FP . By
definition, each element is symmetric. Hence, it suffices
to define the constellations in the range and then to set

for . As usual, we set for
. For and define

where for

The constellations are increasing (componentwise) as a
function of , with and with

.

Remark: Let us clarify the notation occurring in the definition
of the term above. The expression for consists of
the product of two consecutive sections of , indexed by the
subscripts and

. The erasure values at the two sections are first raised
to the powers and

, before taking their product. Here,
represents real numbers in the interval .

Discussion: The interpolation is split into four phases. For
, the constellations decrease from the constant value

to the constant value . For the range , the con-
stellation decreases further, mainly towards the boundaries, so
that at the end of the interval it has reached the value at po-
sition (hence, it stays constant at position ). The third phase
is the most interesting one. For we “move in” the
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Fig. 10. Construction of EXIT curve for ��� �� �� ��-ensemble. The figure
shows three particular points in the interpolation, namely the points � � ���	

[phase i)], � � ���
 [phase ii)], and � � ��� [phase iii)]. For each parameter
both the constellation � as well as the local channel parameters � are shown in
the figure on left. The right column of the figure illustrates a projection of the
EXIT curve. For example, we plot the average EXIT value of the constellation
versus the channel value of the zeroth section. For reference, also the EBP
EXIT curve of the underlying �����-regular ensemble is shown (gray line).

constellation by “taking out” sections in the middle and inter-
polating between two consecutive points. In particular, the value

is the result of “interpolating” between two consecutive
values, call them and , where the interpolation is

done in the exponents, i.e., the value is of the form .
Finally, in the last phase all values are interpolated in a linear
fashion until they have reached .

Example 29 [EXIT Curve for -Ensemble]: Fig. 10
shows a small example, which illustrates this interpolation for
the -ensemble. We start with
an FP of entropy for . This constellation has

and

Note that, even though the constellation is quite short, is
close to , and is close to

. From , we create an EXIT curve
for . The figure shows three particular points of the inter-
polation, one in each of the first three phases.

Consider, e.g., the top figure corresponding to phase i). The
constellation in this case is completely flat. Correspondingly,
the local channel values are also constant, except at the left
boundary, where they are slightly higher to compensate for the
“missing” -values on the left.

The second figure from the top shows a point corresponding
to phase ii). As we can see, the -values close to have not
changed, but the -values close to the left boundary decrease
towards the solution . Finally, the last figure shows a point
in phase iii). The constellation now “moves in.” In this phase,
the values are close to , with the possible exception of
values close to the right boundary (of the one-sided constella-
tion). These values can become large.

The proof of the following theorem can be found in
Appendix V.

Theorem 30 (Fundamental Properties of EXIT Curve): Con-
sider the parameters . Let , , de-
note a proper one-sided FP of length and entropy .
Then, for , the EXIT curve of Definition 28 has the
following properties.

i) Continuity: The curve is continuous for
and differentiable for except for a

finite set of points.
ii) Bounds in phase i): For

iii) Bounds in phase ii): For and

where .
iv) Bounds in phase iii): Let

(19)

Let . For

For and

v) Area under EXIT curve: The EXIT value at position
is defined by
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Let

denote the area of the EXIT integral. Then

vi) Bound on : For

where

C. Step 3): Operational Meaning of EXIT Curve

Lemma 31 [Stability of ]: Let
denote the EXIT curve constructed in

Definition 28. For , let

Consider forward DE (cf., Definition 13) with parameter ,
. Then, the sequence (indexed from to ) converges

to an FP, which is pointwise upper bounded by .
Proof: Recall from Lemma 14 that the sequence con-

verges to an FP of DE, call it . We claim that .
We proceed by contradiction. Assume that is not point-

wise dominated by . Recall that by construction of
the components are decreasing in and that they are contin-
uous. Further, . Therefore

is well defined. By assumption . Note that there must exist
at least one position so that .5 But
since and since is monotone in its components

a contradiction.

D. Step 4): Putting it All Together

We have now all the necessary ingredients to prove Theorem
10. In fact, the only statement that needs proof is (4). First note

5It is not hard to show that under forward DE, the constellation � is uni-
modal and symmetric around �. This immediately follows from an inductive
argument using Definition 13.

that is a nonincreasing function in . This fol-
lows by comparing DE for two constellations, one, say, of length

and one of length , . It therefore suffices to prove
(4) for the limit of tending to infinity.

Let be fixed with , where

Our strategy is as follows. We pick (length of constellation)
sufficiently large (we will soon see what “sufficiently” means)
and choose an entropy, call it . Then, we apply Theorem 27.
Throughout this section, we will use and to denote the FP
and the corresponding channel parameter guaranteed by The-
orem 27. We are faced with two possible scenarios. Either there
exists an FP with the desired properties or there exists an FP
with parameter and entropy at most . We will then show
(using Theorem 30) that for sufficiently large the second al-
ternative is not possible. As a consequence, we will have shown
the existence of an FP with the desired properties. Using again
Theorem 30 we then show that is close to and that
is a lower bound for the BP threshold of the coupled code en-
semble.

Let us make this program precise. Pick
and “large.” In many of the subsequent steps we require spe-
cific lower bounds on . Our final choice is one, which obeys
all these lower bounds. Apply Theorem 27 with parameters
and . We are faced with two alternatives.

Consider first the possibility that the constructed one-sided
FP has parameter and entropy bounded by

For sufficiently large this can be simplified to

(20)

Let us now construct an EXIT curve based on for a
system of length , . According to Theorem 30,
it must be true that

(21)
We claim that by choosing sufficiently large and by choosing

appropriately we can guarantee that

(22)

where is any strictly positive number. If we assume this claim
for a moment, then we see that the right-hand side of (21) can
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be made strictly less than . Indeed, this follows from
(hypothesis of the theorem) by choosing sufficiently

small (by making large enough) and by choosing to be
proportional to (we will see how this is done in the remainder
of the paper). This is a contradiction, since by assumption

. This will show that the second alternative must apply.
Let us now prove the bounds in (22). In what follows, we say

that sections with values in the interval are part of the tail,
that sections with values in form the transition,
and that sections with values in represent
the flat part. Recall from Definition 15 that the entropy of a
constellation is the average (over all the sections) erasure
fraction. The bounds in (22) are equivalent to saying that both
the tail as well as the flat part must have length at least . From
Lemma 26, for sufficiently small , the transition has length at
most (i.e., the number of sections with erasure value,

, in the interval ), a constant independent of .
Informally, therefore, most of the length consists of the tail
or the flat part.

Let us now show all this more precisely. First, we show that
the flat part is large, i.e., it is at least a fixed fraction of . We
argue as follows. Since the transition contains only a constant
number of sections, its contribution to the entropy is small. More
precisely, this contribution is upper bounded by . Fur-
ther, the contribution to the entropy from the tail is small as well,
namely at most . Hence, the total contribution to the entropy
stemming from the tail plus the transition is at most .

However, the entropy of the FP is equal to . As a con-
sequence, the flat part must have length, which is at least a frac-
tion of . This fraction is strictly
positive if we choose small enough and large enough.

By a similar argument we can show that the tail length is also a
strictly positive fraction of . From Lemma 23, .
Hence, the flat part cannot be too large since the entropy is equal
to , which is strictly smaller than . As a conse-

quence, the tail has length at least a fraction

of . As before, this fraction is also strictly posi-
tive if we choose small enough and large enough. Hence,
by choosing to be the lesser of the length of the flat part and
the tail, we conclude that the bounds in (22) are valid and that

can be chosen arbitrarily large (by increasing ).
Consider now the second case. In this case, is a proper one-

sided FP with entropy equal to and with parameter
. Now, using again Theorem 30, we can

show

To obtain the above expression, we take to be sufficiently
large in order to bound the term in , which con-
tains . We also use (22) and choose to be sufficiently small
to bound the corresponding terms. We also replace by

in .
To summarize, we conclude that for an entropy equal to

, for sufficiently large , must be a proper
one-sided FP with parameter bounded as above.

Finally, let us show that is a lower bound
on the BP threshold. We start by claiming that

To prove the above claim we just need to check that
[see bounds in phase ii) of Theorem 30] is

greater than the above infimum. Since in the limit of ,
, for sufficiently large the claim is true.

From the hypothesis of the theorem, we have .
Hence, . Apply forward DE (cf., Defi-
nition 13) with parameter and length

. Denote the FP by (with indices belonging to ).
From Lemma 31, we then conclude that is pointwise upper
bounded by . But for , we have

where we make use of the fact that can be chosen arbitrarily
small. Thus, for all . Consider a
one-sided constellation with for all

. Recall that for a one-sided constellation
for all and as usual for . Clearly, .
Now apply one-sided forward DE to with parameter (same
as the one we applied to get ) and call its limit . From
part i) of Lemma 22, we conclude that the limit is either
proper or trivial. Suppose that is proper (implies nontrivial).
Clearly, for all . But from Lemma 23,
we have that for any proper one-sided FP ,
a contradiction. Hence, we conclude that must be trivial and
so must be .

VI. DISCUSSION AND POSSIBLE EXTENSIONS

A. New Paradigm for Code Design

The explanation of why convolutional-like LDPC ensembles
perform so well given in this paper gives rise to a new paradigm
in code design.

In most designs of codes based on graphs one encounters a
tradeoff between the threshold and the error floor behavior. For
example, for standard irregular graphs an optimization of the
threshold tends to push up the number of degree-two variable
nodes. The same quantity, on the other hand, favors the existence
of low weight (pseudo)codewords.

For convolutional-like LDPC ensembles the important op-
erational quantity is the MAP threshold of the underlying en-
semble. As, e.g., regular LDPC ensembles show, it is simple
to improve the MAP threshold and to improve the error-floor
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performance—just increase the minimum variable-node degree.
From this perspective one should simply pick as large a vari-
able-node degree as possible.

There are some drawbacks to picking large degrees. First,
picking large degrees also increases the complexity of the
scheme. Second, although currently little is known about the
scaling behavior of the convolutional-like LDPC ensembles, it
is likely that large degrees imply a slowing down of the con-
vergence of the performance of finite-length ensembles to the
asymptotic limit. This implies that one has to use large block
lengths. Third, the larger we pick the variable-node degrees
the higher the implied rate loss. Again, this implies that we
need very long codes in order to bring down the rate loss to
acceptable levels. It is tempting to conjecture that the minimum
rate loss that is required in order to achieve the change of
thresholds is related to the area under the EXIT curve between
the MAP and the BP threshold. For example, in Fig. 5, this is
the light gray area. For the underlying ensemble this is exactly
the amount of guessing (help) that is needed so that a local
algorithm can decode correctly, assuming that the underlying
channel parameter is the MAP threshold.

Due to the above reasons, an actual code design will therefore
try to maintain relatively small average degrees so as to keep
this gray area small. But the additional degree of freedom can
be used to design codes with good thresholds and good error
floors.

B. Scaling Behavior

In our design there are three parameters that tend to infinity.
The number of variables nodes at each position, called , the
length of the constellation , and the length of the smoothing
window . Assume we fix and we are content with achieving
a threshold slightly below the MAP threshold. How should we
scale with respect to so that we achieve the best perfor-
mance? This question is of considerable practical importance.
Recall that the total length of the code is of order . We
would therefore like to keep this product small. Further, the rate
loss is of order (so should be large) and should be
chosen large so as to approach the performance predicted by
DE. Finally, how does the number of required iterations scale
as a function of ?

Also, in the proof we assumed that we fix and let tend
to infinity so that we can use DE techniques. We have seen that
in this limit the boundary conditions of the system dictate the
performance of the system regardless of the size of (as long
as is fixed and tends to infinity). Is the same behavior still
true if we let tend to infinity as a function of ? At what
scaling does the behavior change?

C. Tightening of Proof

As mentioned already in the introduction, our proof is
weak—it promises that the BP threshold approaches the MAP
threshold of the underling ensemble at a speed of .
Numerical experiments indicate that the actual convergence
speed is likely to be exponential and that the prefactors are very
small. Why is the analytic statement so loose and how can it be
improved?

Within our framework it is clear that at many places the con-
stants could be improved at the cost of a more involved proof.
It is therefore likely that a more careful analysis following the
same steps will give improved convergence speeds.

More importantly, for mathematical convenience we con-
structed an “artificial” EXIT curve by interpolating a particular
FP and we allowed the channel parameter to vary as a function
of the position. In the proof we then coarsely bounded the
“operational” channel parameter by the minimum of all the
individual channel parameters. This is a significant source
for the looseness of the bound. A much tighter bound could
be given if it were possible to construct the EXIT curve by
direct methods. As we have seen, it is possible to show the
existence of FPs of DE for a wide range of EXIT values. The
difficulty consists in showing that all these individual FPs form
a smooth 1-D manifold so that one can use the Area Theorem
and integrate with respect to this curve.

D. Extensions to BMS Channels and General Ensembles

Preliminary numerical evidence suggests that the behavior of
the convolutional-like LDPC ensembles discussed in this paper
is not restricted to the BEC channel or to regular ensembles but
is a general phenomenon. We will be brief. A more detailed dis-
cussion can be found in the two recent papers [26], [27]. Let us
quickly discuss how one might want to attack the more general
setup.

We have seen that the proof consists essentially of three steps.
1) Existence of FP: As long as we stay with the BEC, a sim-

ilar procedure as the one used in the proof of Theorem
27 can be used to show the existence of the desired FP
for more general ensembles.
General BMS channels are more difficult to handle, but
FP theorems do exist also in the setting of infinite-di-
mensional spaces. The most challenging aspect of this
step is to prove that the constructed FP has the essen-
tial basic characteristics that we relied upon for our later
steps. In particular, we need it to be unimodal, to have
a short transition period, and to approach the FP density
of the underlying standard ensemble.

2) Construction of EXIT curve and bounds: Recall that in
order to create a whole EXIT curve, we started with an
FP and interpolated the value of neighboring points. In
order to ensure that each such interpolated constellation
is indeed an FP, we allowed the local channel parameters
to vary. By choosing the interpolation properly, we were
then able to show that this variation is small. As long
as one remains in the realm of BEC channels, the same
technique can in principle be applied to other ensembles.
For general channels the construction seems more chal-
lenging. It is not true in general that, given a constella-
tion, one can always find “local” channels that make this
constellation an FP. It is therefore not clear how an inter-
polation for general channels can be accomplished. This
is perhaps the most challenging hurdle for any potential
generalization.

3) Operational interpretation: For the operational interpre-
tation we relied upon the notion of physical degradation.
We showed that, starting with a channel parameter of
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a channel, which is upgraded w.r.t. to any of the local
channels used in the construction of the EXIT curve,
we do not get stuck in a nontrivial FP. For the BEC,
the notion of degradation is very simple, it is the nat-
ural order on the set of erasure probabilities, and this is
a total order. For general channels, an order on channels
still exists in terms of degradation, but this order is par-
tial. We therefore require that the local channels used in
the construction of the EXIT curve are all degraded w.r.t.
a channel of the original channel family (e.g., the family
of Gaussian channels) with a parameter, which is only
slightly better than the parameter, which corresponds to
the MAP threshold.

E. Extension to General Coupled Graphical Systems

Codes based on graphs are just one instance of graphical sys-
tems that have distinct thresholds for “local” algorithms (what
we called the BP threshold) and for “optimal” algorithms (what
we called the MAP threshold). To be sure, coding is somewhat
special—it is conjectured that the so-called replica-symmetric
solution always determines the threshold under MAP processing
for codes based on graphs. Nevertheless, it is interesting to in-
vestigate to what extent the coupling of general graphical sys-
tems shows a similar behavior. Is there a general class of graph-
ical models in which the same phenomenon occurs? If so, can
this phenomenon either be used to analyze systems or to devise
better algorithms?

APPENDIX I
PROOF OF LEMMA 1

We proceed as follows. We first consider a “circular” en-
semble. This ensemble is defined in an identical manner as the

ensemble except that the positions are now from 0
to and index arithmetic is performed modulo . This
circular definition symmetrizes all positions, which in turn sim-
plifies calculations.

As we will see shortly, most codes in this circular ensemble
have a minimum stopping set distance, which is a linear fraction
of . To make contact with our original problem we now argue
as follows. Set . If, for the circular ensemble, we
take consecutive positions and set them to then this
“shortened” ensemble has length and it is in one-to-one
correspondence with the ensemble. Clearly, no new

stopping sets are introduced by shortening the ensemble. This
proves the claim.

Let denote the expected number of stop-
ping sets of weight of the “circular” ensemble. Let denote
a code chosen uniformly at random from this ensemble.

Recall that every variable node at position connects to a
check node at positions , modulo . There
are variable nodes at each position and check nodes
at each position. Conversely, the edges entering the check
nodes at position come equally from variable nodes at position

. These edges are connected to the check
nodes via a random permutation.

Let , , , denote the weight
at position , i.e., the number of variable nodes at position
that have been set to . Call the type.
We are interested in the expected number of stopping sets for a
particular type; call this quantity . Since the
parameters are understood from the context, we
shorten the notation to . We claim that (23), shown at the
bottom of the page, holds, where . This ex-
pression is easily explained. The variable nodes at position

that are set to can be distributed over the variable nodes
in ways. Next, we have to distribute the

ones among the check nodes in such a way that every
check node is fulfilled (since we are looking for stopping sets,
“fulfilled” means that a check node is either connected to no
variable node with associated value “ ” or to at least two such

nodes). This is encoded by .

Finally, we have to divide by the total number of possible
connections; there are check node sockets at position

and we distribute ones. This can be done in

ways. To justify step (a) note that

(23)
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Note that, besides the factor , which is negligible, each
term in the product (23) has the exact form of the average stop-
ping set weight distribution of the standard -ensemble of

length and weight . (Potentially this weight is
nonintegral but the expression is nevertheless well defined.)

We can therefore leverage known results concerning
the stopping set weight distribution for the underlying

-regular ensembles. For the -regular ensem-
bles we know that the relative minimum distance is at least

with high probability [13, Lemma D.17]. There-

fore, as long as , for all
, is strictly negative and so most

codes in the ensemble do not have stopping sets of this
type. The claim now follows since in order for the condition

to be violated for at least one

position we need to exceed .

APPENDIX II
BASIC PROPERTIES OF

Recall the definition of from (2). We have the following.

Lemma 32 [Basic Properties of ]: Consider the
-regular ensemble with and let .

i) and ; for
.

ii) There exists a unique value so that
, and there exists a unique value
so that .

iii) Let

The quantities , , , and are nonneg-
ative and depend only on the channel parameter and the
degrees . In addition, is strictly positive for
all .

iv) For

v) For

vi) If we draw a line from with slope , then lies
below this line for .
If we draw a line from with slope , then lies
below this line for all .
If we draw a line from with slope , then lies
above this line for .
Finally, if we draw a line from with slope , then

lies above this line for all .

Fig. 11. Pictorial representation of the various quantities, which appear in
Lemma 32. We use the ��� �� ensemble to transmit over a BEC with erasure
probability � � ����. The function ���� � ������ � �� � �� � � � is
represented in the figure by the smooth bold curve. The roots of ���� � �
or, equivalently, the FPs of DE are given by �, � ������ � ��	�
�, and
� ������ � ���	�
. There are only two stationary points of ����, i.e., only
two points at which � ��� � �. They are given by � ������ � ������ and
� ������ � ��	���. Along with the curve ����, the figure contains three
dashed lines representing the tangents at the points �, � ������, and � ������.
The slopes of the tangents at 0, � ������ and � ������ are � ��� � ��,
� �� � � ����
�, and � �� � � ���		�	, respectively. Also shown are
the four lines, which bound ���� in the various regions. These lines are given
(their endpoints) by: ������� �� � ��� ���, ��� � ��� ��� �� ����������,
��� ���������� �� � ��� ���, and ��� � ��� ��� �� ���������� and have
slopes ����������	�
�������
� and ������
, respectively. Thus, we
have � ������ � �����
, � ������ � �����
, � ������ � ������, and
� ������ � ����
�.

Example 33 [ -Ensemble]: Consider transmission
using a code from the ensemble over a BEC with

. The FP equation for the BP decoder is given by

The function is shown in
Fig. 11. The equation has exactly three real roots,
namely, and . Further
properties of are shown in Fig. 11.

Let us prove each part separately. In order to lighten our no-
tation, we drop the dependence for quantities like , , ,
or .

i) Note that for all , with equality
at the two ends. This implies that and that

. With respect to the derivative, we have

ii) We claim that has exactly one real solution in
. We have

(24)

Thus, for only at

(25)

Since , the above solution is in .
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Since , we know from Rolle’s
theorem that there must exist an and an

, such that .
Now suppose that there exists a , ,
such that , so that vanishes at three distinct
places in . Then, by Rolle’s theorem, we conclude
that has at least two roots in the interval ,
a contradiction.

iii) To check that the various quantities in part iii) are strictly
positive, it suffices to verify that and

. But we know from Lemma 9 that has exactly
two solutions, namely and , and neither of them is
equal to or since .

iv) From (24), for all , we can upper bound
by

(26)

Note that and, by definition, ,
so that . Consider the function ,

. From the continuity of the function and,
using the mean-value theorem, we conclude that there ex-
ists an such that . But
from (26), we know that . It follows that

.
v) To get the universal lower bound on note that the

dominant (i.e., smaller) term in the definition of is
. (The second term, , is .) Recall that

is the point where takes on the minimum value in
the range . We can therefore rewrite in the
form . To get a lower bound on

we use the trivial upper bound . It there-
fore remains to lower bound . No-
tice that is a decreasing function of for every

. Thus, inserting , we get

Let us see how we derived the last inequality. First, we

claim that for we have

. Indeed, this can be easily
seen by using the identity

and . Then, we use

for all . Finally, we
use

so that

(27)

As a consequence and

hence we get the last inequality. Now we can further lower
bound the right-hand side above by evaluating it at any

element of .

We pick . Continuing the chain
of inequalities, we get

Since we have and . Hence,
we obtain .

vi) Let us prove that for all , is strictly
above the line, which contains the point and has
slope . Denote this line by . More precisely, we
have . Suppose to the contrary that
there exists a point such that .
In this case, we claim that the equation
must have at least four roots.
This follows from a) , b) ,
c) , d) , and, finally, e)

, where . If all these inequalities
are strict then the four roots are distinct. Otherwise, some
roots will have higher multiplicities.
But if has at least four roots then

has at least two roots. Note that
, since is a linear function. This leads to

a contradiction, since, as discussed in part ii), has
only one (single) root in .
The other cases can be proved along similar lines.

APPENDIX III
PROOF OF LEMMA 26

We split the transition into several stages. Generically, in each
of the ensuing arguments we consider a section with associated
value just above the lower bound of the corresponding interval.
We then show that, after a fixed number of further sections, the
value must exceed the upper bound of the corresponding in-
terval. Depending on the length and the entropy of the con-
stellation there might not be sufficiently many sections left in
the constellation to pass all the way to . In this case,
the conclusion of the lemma is trivially fulfilled. Therefore, in
what follows, we can always assume that there are sufficiently
many points in the constellation.

In the remainder of the paper, and are the specific
quantities for a particular , whereas and are the strictly
positive universal bounds valid for all , discussed in Lemma
32. We write and instead of and to emphasize
their operational meaning.

i) Let . Then, there are at most sections

with value in the interval .
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Let be the smallest index so that . If
, then the claim is trivially fulfilled.

Assume therefore that . Using the
monotonicity of

This implies

This is equivalent to

More generally, using the same line of reasoning

as long as .
Wesummarize.The totaldistancewehave tocover is
and every steps we cover a distance of at least

as long as we have not surpassed . Therefore,

after steps, we have either passed

or we must be strictly closer to than . Hence, to
cover the remainingdistance,weneedatmost extra
steps. The total number of steps needed is therefore upper
bounded by , which, in turn,

is upper bounded by . The final claim fol-

lows by bounding with and by .

ii) From up to it takes at most
sections.
Recall that is defined by .
From Lemma 24 part i),

. Sum this inequality over all sections from to

Writing in terms of the , for all , and rear-
ranging terms

Let us summarize

(28)

From i) and our discussion at the beginning, we can
assume that there exists a section so that

. Consider sections ,
so that in addition . If no such

exists then there are at most points in the interval
, and the statement is correct a fortiori.

From (28), we know that we have to lower bound
. Since by assumption

, it follows that , so that every contri-
bution in the sum is positive. Further,
by (the spacing) Lemma 25, . Hence

(29)

Since by assumption , it follows that
and by definition . Finally, ac-

cording to Lemma 32 part iii), for
. Hence

(30)

The inequality in (30) follows since there must exist a sec-
tion with value greater than and smaller than .
Indeed, suppose, on the contrary, that there is no section
with value between . Since ,

we must then have that . But by the
spacing Lemma 25 we have that . This
would imply that . In other words, .
Using the universal lower bound on from Lemma
32 part iv), we conclude that , a contradiction
to the hypothesis of the lemma.
Combined with (28) this implies that

We summarize. The total distance we have to cover is
and every steps we cover a dis-

tance of at least as long as we have not
surpassed . Allowing for extra steps to
cover the last part, bounding again by , bounding

by and replacing and by their
universal lower bounds, proves the claim.

iii) From to it takes at most
sections.
Let be the smallest index so that .
It follows that . Let be the
largest index so that . From the previous
line we deduce that , so that

. We use again (28). Therefore, let us
bound . We have

We obtain as follows. There are two sums, one from
to and another from to . Let us begin with

the sum from to . First, we claim that .
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Indeed, suppose . Then, using the definition
of

But from (the spacing) Lemma 25, ,
a contradiction, since from the hypothesis of the lemma

. Using (29) and (30) with the integral from to
we get the first expression in . Note that the in-

tegral until suffices because either or,
following an argument similar to the one after (30), there
must exist a section with value between .

We now focus on the sum from to . From the defini-
tion of , for all , .
Indeed, recall from Lemma 32 that for

. In particular, this implies that the line with
slope going through the point lies above

for . Further,
. Finally, using , we get

the second expression in .
From (28), we now conclude that

which is equivalent to

The final claim follows by replacing again and
by their universal lower bounds and .

iv) From to it takes at most
steps, where

From step iii), we know that within a fixed number of steps
we reach at least above . On the other
hand, we know from Lemma 23 that . We con-
clude that . From Lemma 9,
weknowthat and that thisdistance
is strictly increasing for . Therefore, there exists a
unique number, call it , , so that

if and only if . As defined above, let

Since , both and are strictly
positive. Using similar reasoning as in step i), we con-
clude that in order to reach from

to it takes at most steps,

where we have used the fact that, by assumption,
.

From these four steps, we see that we need at most

sections in order to reach once we reach . This con-
stant depends on but it is independent of and .

APPENDIX IV
PROOF OF THEOREM 27

To establish the existence of with the desired properties,
we use the Brouwer FP theorem: it states that every continuous
function from a convex compact subset of a Euclidean space
to itself has an FP.

Let denote the one-sided forward DE FP for parameter
. Let the length be chosen in accordance with the statement of

the theorem. By assumption . Using Lemma 22 part

ii), we conclude that , i.e., is nontrivial. By
Lemma 22 part i), it is therefore proper, i.e., it is nondecreasing.
Suppose that . In this case, it is easy to verify that the
second statement of the theorem is true. So in the remainder of
the proof we assume that .

Consider the Euclidean space . Let be the sub-
space

First note that is nonempty since is nontrivial and has
entropy at least . We claim that is convex and compact.
Indeed, convexity follows since is a convex polytope (de-
fined as the intersection of half spaces). Since
and is closed, is compact.

Note that any constellation belonging to has entropy
and is increasing, i.e., any such constellation is proper. Our

first step is to define a map , which “approximates” the
DE equation and is well-suited for applying the Brouwer FP
theorem. The final step in our proof is then to show that the FP
of the map is in fact an FP of one-sided DE.

The map is constructed as follows. For , let
be the map

Define to be the map

otherwise
where
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Let us show that this map is well defined. First, consider the
case . Since , (componentwise).
By construction, it follows that , where the
last step is true since is the forward FP of DE for .
We conclude that . Further, by construction

. It is also easy to check that is
nonnegative and that it is nondecreasing. It follows that in this
case .

Consider next the case . As we have seen,
so that . Together with

this shows that . Further, the choice of
guarantees that . It is easy to check that

is increasing and bounded above by . This shows that also in
this case .

We summarize that maps into itself.
In order to be able to invoke Brouwer’s theorem we need to

show that is continuous. This means we need to show that
for every and for any , there exists a such
that if then .

First, note that and are continuous maps on .
As a result, , which is the composition of two contin-
uous maps, is also continuous.

Fix . We have three cases: i) , ii)
, and iii) .

We start with i). Let and fix . From the
continuity of we know that there exists a ball
of radius so that if then

, so that . It follows that for those ,
.

For a subsequent argument we will need also a tight bound
on itself. Let us therefore choose

, . And let us choose so that if
then , so that

.
Further, since is continuous, there exists such

that for all , . Choose
. Then, for all

where above we used the bound .
Using similar logic, one can prove ii).

Consider claim iii). In this case , which implies
that . As before, there exists such that
for all , . Let

. Since we assumed that , we have
. Furthermore, there exists such that for all

, . Choose
. Consider . Assume first that

. Thus, as before

Now let us assume that . Then, we have

where above we used: i) , ii)
, and iii) (when we explicitly write

).
We can now invoke Brouwer’s FP theorem to conclude that

has an FP in , call it .
Let us now show that, as a consequence, either there ex-

ists a one-sided FP of DE with parameter and entropy

bounded between and , or it-
self is a proper one-sided FP of DE with entropy . Clearly,
either or . In the first case, i.e., if

, then . Combined with
the nontriviality of , we conclude that is a proper one-sided
FP with entropy and the channel parameter (given by )
less than or equal to . Also, from Lemma 23, we then conclude
that the channel parameter is strictly greater than .

Assume now the second case, i.e., assume that .
This implies that

But since

As a result, . We will now show that this implies
the existence of a one-sided FP of DE with parameter

and with entropy bounded between
and .

Let and define , . By as-
sumption, , i.e., . By induction this im-
plies that , i.e, the sequence is monotonically
decreasing. Since it is also bounded from below, it converges to
an FP of DE with parameter , call it .

We want to show that is nontrivial and we want to give a
lower bound on its entropy. We do this by comparing with a
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constellation that lower bounds and which converges under
DE to a nontrivial FP.

We claim that at least the last compo-
nents of are above

where on the right-hand side we assume (worst case) that the
last components have height and the previous
components have height . If we solve the inequality for

we get .
Consider standard DE for the underlying regular en-

semble and . We claim that it takes at most

DE steps to go from the value to a value above .
The proof idea is along the lines used in the proof of Lemma
26. Consider the function as defined in (2) for .

Note that and that .
Further, the function is unimodal and strictly positive in
the range and is equal to the change in ,
which happens during one iteration, assuming that the current

value is . If then the statement is trivially
true. Otherwise, the progress in each required step is at least
equal to

We use Lemma 32 part vi) to get the last inequality. The claim
now follows by observing that the total distance that has to be
covered is no more than .

Consider the constellation , which takes the value for

and the value for . By construc-
tion, . Define , .
By monotonicity, we know that (and hence

). In particular, this is true for . But note

that at least the last positions of are above .
Also, by the choice of , .

Define the constellation , which takes the value for

and the value for . Define

, . Again, observe that by definition

and , hence we have . From

Lemma 22 we know that for a length

and a channel parameter the resulting FP of forward DE
has entropy at least

Above, follows from the first assumption on in the hy-
pothesis of the theorem. It follows that has (unnormalized)
entropy at least equal to and therefore normalized en-
tropy at least .

Since , we conclude that is a
one-sided FP of DE for parameter with entropy bounded

between and .

APPENDIX V
PROOF OF THEOREM 30

i) Continuity: In phases i), ii), and iv), the map is differen-
tiable by construction. In phase iii), the map is differen-
tiable in each “period.” Further, by definition of the map,
the (sub)phases are defined in such a way that the map is
continuous at the boundaries.

ii) Bounds in phase i): Consider . By construction
of the EXIT curve, all elements , , are the
same. In particular, they are all equal to . Therefore,
all values , , are identical, and
equal to .
For points close to the boundary, i.e., for

, some of the inputs involved in
the computation of are instead of . There-
fore, the local channel parameter has to be strictly
bigger than in order to compensate for this. This
explains the lower bound on .

iii) Bounds in phase ii): Let and . Then

This gives the lower bound .

iv) Bounds in phase iii): Let and .
Note that but that . The
range is therefore split into “periods.” In
each period, the original solution is “moved in” by
one segment. Let denote the current
period we are operating in. In what follows, we think of

as fixed and consider in detail the interpolation in this
period. To simplify our notation, we reparameterize the
interpolation so that if goes from to , we moved in the
original constellation exactly by one more segment. This
alternative parametrization is only used in this section. In
part vi), when deriving bounds on , we use again the
original parametrization.
Taking this reparameterization into account, for

, according to Definition 28
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We remark that decreases with . Thus, we have for
any , . By symmetry,

for .
We start by showing that if and

then . For ,
define

Further, define

Note that the values in the last definition are the values
of the one-sided FP. In particular, this means that for
we have .
From the definition of the EXIT curve, we have

(31)

By monotonicity

In the first step, we used the fact that
and the second step is true by definition.

Substituting this into the denominator of (31) results in

where we defined . If we plug the
upper bound on due to (the spacing) Lemma
25 into this expression, we get

By assumption . But from the monotonicity,
we have . Thus, .
This is equivalent to

(32)

As a consequence

the promised upper bound.
Let us now derive the lower bounds. First, suppose that

. For , we can use again mono-
tonicity to conclude that

This proves that

Note that this sequence of inequalities is true for the whole
range . Since , we
have and using (32), we have

As a consequence

It remains to consider the last case, i.e., we assume that
. From Lemma 24 part iv), we have

and
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We start with (31). Write in the numerator explicitly
as and bound each of the two terms
by the above expressions. This yields

Applying steps, similar to those used to prove Lemma 24
part ii), to the above denominator, we get

Combining all these bounds and canceling common terms
yields

(33)

Applying Holder’s inequality6 we get

Putting everything together, we now get

(34)
By assumption . Again from monotonicity, we
have . Thus, . Combining
this with Lemma 24 part iii) and (19) in the hypothesis of
the theorem, we obtain

6For any two �-length real sequences �� � � � � � � � � � and
�� � � � � � � � � � and two real numbers �, � � ����� such that � � �,
Holder’s inequality asserts that

�� � � � �� � �� � �

Suppose that . Then, from the
above inequality, we conclude that

where we set to zero all the terms smaller than
. Upper bounding by ,

we get

But this is contrary to the hypothesis of the theorem,
. Hence, we must have .

Therefore

where we replace by

and the remaining values by . Thus, we have

Using and combining everything, we get

v) Area under EXIT curve7: Consider the set of variable
nodes at position , . We want to compute
their associated EXIT integral, i.e., we want to compute

. We use the technique introduced in [2].
We consider the set of computation trees of height
rooted in all variable nodes at position , . For
each such computation tree there are check nodes and

variable nodes. Each of the leaf variable
nodes of each computation tree has a certain position in
the range . These positions differ for
each computation tree. For each computation tree, assign
to its root node the channel value , whereas each
leaf variable node at position “sees” the channel value

.
In order to compute , we proceed as fol-
lows. We apply the standard area theorem [13, Th. 3.81],
to the simple codes represented by these computa-
tion trees. Each such code has length and

(linearly independent) check nodes. As we will discuss
shortly, the standard area theorem tells us the value of the
sum of the individual EXIT integrals asso-
ciated to a particular code. This sum consists of the EXIT
integral of the root node as well as the EXIT

7A slightly more involved proof shows that the area under the EXIT curve
(or more precisely, the value of the EXIT integral) is equal to the design rate,
assuming that the design rate is defined in an appropriate way (see the discussion
on page 5). For our purpose it is sufficient, however, to determine the area up to
bounds of order �	
. This simplifies the expressions and the proof.
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integrals of the leaf nodes. Assume that we can determine
the contributions of the EXIT integrals of the leaf nodes
for each computation tree. In this case, we can subtract the
average such contribution from the sum and determine the
average EXIT integral associated to the root node. In the
ensuing argument, we consider a fixed instance of a com-
putation tree rooted in . We then average over the ran-
domness of the ensemble. For the root node the channel
value stays the same for all instances, namely, as
given in Definition 28 of the EXIT curve. Hence, for the
root node the average, over the ensemble, is taken only
over the EXIT value. Then, exchanging the integral (w.r.t.

) and the average and using the fact that each edge as-
sociated to the root node behaves independently, we con-
clude that the average EXIT integral associated to the root
node is equal to , the desired quantity. Let
us now discuss this program in more detail.
For , we claim that the average
sum of the EXIT integrals associated to any such compu-
tation tree is equal to . This is true since for
in this range, the positions of all leaf nodes are in the range

. Now applying the area theorem8 one can con-
clude that the average sum of all the EXIT
integrals associated to the tree code equals the number
of variable nodes minus the number of check nodes:

.
For , the situa-
tion is more complicated. It can happen that some of the
leaf nodes of the computation tree see a perfect channel
for all values since their position is outside .
These leaf nodes are effectively not present in the code
and we should remove them before counting. Although
it would not be too difficult to determine the exact av-
erage contribution for such a root variable node we only
need bounds—the average sum of the EXIT integrals as-
sociated to such a root node is at least and at most

.
We summarize: If we consider all computation trees
rooted in all variable nodes in the range
and apply the standard area theorem to each such
tree, then the total average contribution is at least

and at most
. From these bounds,

we now have to subtract the contribution of all the leaf
nodes of all the computation trees and divide by in
order to determine bounds on .
Consider the expected contribution of the EXIT
integrals of each of the computation trees rooted at ,

. We claim that this contribution
is equal to . For computation trees rooted
in , on the other hand,
this contribution is at least and at most .

8To be precise, the proof of the area theorem given in [13, Th. 3.81] assumes
that the channel value of the root node, call it � ���, stays within the range ��� ��.
This does not apply in our setting; for �� �, � ��� becomes unbounded. Nev-
ertheless, it is not hard to show, by explicitly writing down the sum of all EXIT
integrals, using integration by parts and finally using the fact that ������ �����
is an FP, that the result still applies in this more general setting.

Let us start with computation trees rooted in ,
. Fix . It suffices to consider in de-

tail one “branch” of a computation tree since the EXIT
integral is an expected value and expectation is linear. By
assumption the root node is at position . It is connected
to a check node, let us say at position , ,
where the choice is made uniformly at random. In turn,
this check node has children. Let the positions of
these children be , where all these indices
are in the range , and all choices are inde-
pendent and are made uniformly at random.
Consider now this check node in more detail and apply
the standard area theorem to the corresponding parity-
check code of length . The message from the root node
is , whereas the messages from the leaf nodes are

, , respectively. We know from the
standard area theorem applied to this parity-check code of
length that the sum of the EXIT integrals is equal to

. So the average contribution of one such EXIT inte-
gral is , and the average of randomly
chosen such EXIT integrals is . Recalling
that so far we only considered one out of branches and
that there are computation trees, the total average con-
tribution of all leaf nodes of all computation trees rooted
in should therefore be .
Let us now justify why the contribution of the leaf
nodes is equal to the “average” contribution. Label the

edges of the check node from to , where “ ”
labels the root node. Further, fix , the position of the
check node. As we have seen, we get the associated
channels if we root the tree in position
, connect to check node , and then connect further to

. This particular realization of this branch
happens with probability (given that we start in )
and the expected number of branches starting in that
have exactly the same “type” equals

. Consider a permutation of
and keep fixed. To be concrete, let us say we consider
the permutation . This situation occurs
if we root the tree in , connect to check node , and
then connect further to . Again, this happens
with probability and the expected number of such
branches is . It is crucial to observe that all
permutations of occur with equal prob-
ability in these computation trees and that all the involved
integrals occur for computation graphs that are rooted in
a position in the range . Therefore, the “average”
contribution of the leaf nodes is just a fraction

of the total contribution, as claimed. Here,
we have used a particular notion of “average.” We have
averaged not only over various computation trees rooted
at position but also over computation trees rooted, let
us say, in position , . Indeed, we have
averaged over an equivalence class given by all permu-
tations of , with , the position of the
check node held fixed. Since ,
all these quantities are also in the range , and so
they are included in our consideration.
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It remains to justify the “average” contributions that we
get for computation trees rooted in

. The notion of average is the same as we
have used it above. Even though we are talking about aver-
ages, for each computation tree, it is clear that the contri-
bution is nonnegative since all the involved channel values

are increasing functions in . This proves that the
average contribution is nonnegative. Further, the total un-
certainty that we remove by each variable leaf node is at
most . This proves the upper bound.
We can now summarize. We have

vi) Bound on : Consider the EXIT function constructed ac-
cording to Definition 28. Recall that the EXIT value at
position is defined by

(35)

and the area under the EXIT curve is given by

(36)
As we have just seen, this integral is close to the design
rate , and from Lemma 3, we know that
this design rate converges to for any fixed
when tends to infinity.
The basic idea of the proof is the following. We will
show that is also “close” to

, where is the polynomial defined
in Lemma 4. In other words, must be “almost” a
zero of . But has only a single positive
root and this root is at .
More precisely, we first find upper and lower bounds on

by splitting the integral (36) into four
phases. We will see that the main contribution to the area
comes from the first phase and that this contribution is
close to . For all other phases,
we will show that the contribution can be bounded by a
function, which does not depend on and which
tends to if let and tend to infinity.

For , define as

Further, let

Clearly, .
We claim that for

If we assume these bounds for a moment, and
simplify the expressions slightly, we see that for

Now using the bound in part v) on the area under the EXIT
curve, we get

where

From this we can derive a bound on as follows. Using
Taylor’s expansion, we get
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where denotes the derivative w.r.t. and
. From Lemma 4, one can verify that

for all . Thus

Now using and the fundamental
theorem of calculus, we have

Further, for a -regular ensemble, we have

where we recall that .
Next, from Lemma 23, we have that . Thus,

. Also, . As a consequence,
and

for all in the interval of the above integral.
Combining everything, we get

Define

Then, using and
, the final result is

To obtain , we use that is an FP of stan-
dard DE for channel parameter . Also, we use

to get .
It remains to verify the bounds on the six integrals. Our
strategy is the following. For ,
we evaluate the integrals directly in phases i), ii), and iii),
using the general bounds on the quantities . For the
boundary points, i.e., for and

, as well as for all the positions in phase
iv), we use the following crude but handy bounds, valid
for :

(37)

(38)

To prove (37), use integration by parts to write

Now note that and that is an increasing
function in by construction. The second term on the
right-hand side of the above equality is therefore negative
and we get an upper bound if we drop it. We get the further
bounds by inserting the explicit expressions for and
and by noting that as well as are upper bounded by .
To prove (38), we also use integration by parts, but now we
drop the first term. Since is an increasing function
in and it is continuous, it is invertible. We can therefore
write the integral in the form . Now note

that , where

we used the fact that [recall the definition of

from (35)]. This shows that . We
conclude that

The bounds on , , and are straightforward applica-
tions of (38) and (37). For example, to prove that ,
note that there are positions that are involved. For
each position, we know from (37) that the integral is upper
bounded by . The claim now follows since .
Using (38) leads to the lower bound. Exactly the same line
of reasoning leads to both the bounds for .
For the upper bound on , we use the second inequality
in (37). We then bound and use

; cf., (35). Next, we bound each term in the

sum by the maximum term. This maximum is .
This term can further be upper bounded by

. Indeed, replace all the
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values in by their maximum, . The lower
bound follows in a similar way using the penultimate in-
equality in (38).
Let us continue with . Note that for and

, and

that . A direct calculation
shows that

Let us now compute bounds on . Using (37), we get

To obtain the second inequality, we use
. Using the second inequality of (38), we

lower bound as follows. We have

To obtain the second inequality, we use
and .

It remains to bound . For ,
consider

(39)

where we have made use of the fact that for and
, . To get an upper bound on write

Here we have used the lower bounds on
in phase iii) from Theorem 30 and the fact that

. Again using integra-
tion by parts, and upper bounding both and

by , we conclude that

Note that the right-hand side is independent of so that
this bound extends directly to the sum, i.e.,

For the lower bound we can proceed in a similar fashion.
We first apply integration by parts. Again using (39),
the first term corresponding to the total derivative can be
written as

We write the other term in the integration by parts as fol-
lows. For every section number ,
let correspond to the smallest number in such
that . Recall the definition of from part iv)
of Theorem 30. If for any section number , ,
then is well defined and for all .
Indeed, this follows from the continuity and the mono-
tonicity of w.r.t. . On the other hand, if

, we set . Then, we can write the second term as

We now lower bound the two integrals as follows. For
, we use the upper bound on valid in

phase iii) from Theorem 30. This gives us the lower bound

where above we used the fact that .
For , we use the universal bound

[on ] stated in (38).
Since , using the lower bound on

[in phase iii) of
Theorem 30], we get
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Above we use , replace by

and by . Putting everything
together

Since , the final result is
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