
Computer Architecture is Back
- The Berkeley View on the

Parallel Computing Landscape

David Patterson, Krste Asanovíc, Kurt Keutzer,
and a cast of thousands

U.C. Berkeley

January, 2007

2

High Level Message

� Everything is changing

� Old conventional wisdom is out

� We desperately need new approach to HW
and SW based on parallelism since industry
has bet its future that parallelism works �

� Need to create a “watering hole” to bring
everyone together to quickly find that
solution
� architects, language designers, application experts, numerical
analysts, algorithm designers, programmers, …

3

Outline
� Old vs. New Conventional Wisdom

� 7 Questions to Frame Parallel Research

� New Benchmarks for New Architectures

� Hardware Building Blocks

� Human-centric Programming Model

� Innovating at HW/SW interface without Compilers

� Deconstructing Operating Systems

� Building innovative computers without custom chips

� Optimism for Parallel Computing Revolution?

� Where do we go from here?

4

Conventional Wisdom (CW)
in Computer Architecture

1. Old CW: Power is free, but transistors expensive

� New CW is the “Power wall”:
Power is expensive, but transistors are “free”

� Can put more transistors on a chip than have the power to turn on

2. Old CW: Only concern is dynamic power

� New CW: For desktops and servers, static power
due to leakage is 40% of total power

3. Old CW: Monolithic uniprocessors are reliable
internally, with errors occurring only at pins

� New CW: As chips drop below 65 nm feature sizes,
they will have high soft and hard error rates

5

Conventional Wisdom (CW)
in Computer Architecture

4. Old CW: By building upon prior successes, continue
raising level of abstraction and size of HW designs

� New CW: Wire delay, noise, cross coupling, reliability,
clock jitter, design validation, … stretch development
time and cost of large designs at ≤65 nm

5. Old CW: Researchers demonstrate new
architectures by building chips

� New CW: Cost of 65 nm masks, cost of ECAD,
and design time for GHz clocks
⇒ Researchers no longer build believable chips

6. Old CW: Performance improves latency & bandwidth

� New CW: BW improves > (latency improvement)2

6

Conventional Wisdom (CW)
in Computer Architecture

7. Old CW: Multiplies slow, but loads and stores fast

� New CW is the “Memory wall”:
Loads and stores are slow, but multiplies fast

� 200 clocks to DRAM, but even FP multiplies only 4 clocks

8. Old CW: We can reveal more ILP via compilers
and architecture innovation

� Branch prediction, OOO execution, speculation, VLIW, …

� New CW is the “ILP wall”:
Diminishing returns on finding more ILP

9. Old CW: 2X CPU Performance every 18 months

� New CW is Power Wall + Memory Wall + ILP Wall
= Brick Wall

7

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.

V
A

X
-1

1
/7

8
0

)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A

Quantitative Approach, 4th edition, Sept. 15, 2006

⇒⇒⇒⇒ Sea change in chip
design: multiple “cores” or
processors per chip

3X

8

Sea Change in Chip Design

� Intel 4004 (1971): 4-bit processor,
2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor!

� RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

� 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

� RISC II shrinks to ≈ 0.02 mm2 at 65 nm

� Caches via DRAM or 1 transistor SRAM or 3D chip stacking

� Proximity Communication via capacitive coupling at > 1 TB/s ?
(Ivan Sutherland @ Sun / Berkeley)

9

Conventional Wisdom (CW)
in Computer Architecture

10. Old CW: Increasing clock frequency is primary
method of performance improvement

� New CW: Processors Parallelism is primary method
of performance improvement

11. Old CW: Don’t bother parallelizing app, just wait and
run on much faster sequential computer

� New CW: No one building 1 processor per chip
� End of La-Z-Boy Programming Era

12. Old CW: Less than linear scaling for a
multiprocessor is failure

� New CW: Given the switch to parallel hardware,
even sublinear speedups are beneficial

10

Parallelism again? What’s different
this time?
“This shift toward increasing parallelism is not a
triumphant stride forward based on breakthroughs
in novel software and architectures for parallelism;
instead, this plunge into parallelism is actually a
retreat from even greater challenges that thwart
efficient silicon implementation of traditional
uniprocessor architectures.”

Berkeley View, December 2006

� HW/SW Industry bet its future that breakthroughs
will appear before its too late

11

From Multiprogramming to
Multithreading
� Multiprogrammed workloads (mix of
independent sequential tasks) might
obviously benefit from first few generations
of multicores

� But how will single tasks get faster on future
manycores?

12

Need a New Approach

� Berkeley researchers from many backgrounds met
between February 2005 and December 2006 to
discuss parallelism
� Circuit design, computer architecture, massively parallel computing,

computer-aided design, embedded hardware and software,
programming languages, compilers, scientific programming, and
numerical analysis

� Krste Asanovíc, Rastislav Bodik, Bryan Catanzaro,
Joseph Gebis, Parry Husbands, Kurt Keutzer, Dave
Patterson, William Plishker, John Shalf, Samuel
Williams, Katherine Yelick + others

� Tried to learn from successes in embedded and high
performance computing

� Led to 7 Questions to frame parallel research

13

7 Questions for Parallelism
� Applications:

1. What are the apps?

2. What are kernels of apps?

� Hardware:

3. What are the HW building
blocks?

4. How to connect them?

� Programming Model &
Systems Software:

5. How to describe apps and
kernels?

6. How to program the HW?

� Evaluation:

7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

14

� Old CW: Since cannot know future programs,
use old programs to evaluate future computers
� e.g., SPEC2006, EEMBC

� What about parallel codes?
� Few, tied to old models, languages, architectures, …

� New approach: Design future computers for
patterns of computation and communication
important in the future

� Claim: 13 “dwarfs” are key for next decade,
so design for them!
� Representative codes may vary over time, but these
dwarfs will be important for > 10 years

Apps and Kernels

15

High-end simulation in the physical
sciences = 7 numerical methods:

1. Structured Grids (including
locally structured grids, e.g.
Adaptive Mesh Refinement)

2. Unstructured Grids

3. Fast Fourier Transform

4. Dense Linear Algebra

5. Sparse Linear Algebra

6. Particles

7. Monte Carlo

Phillip Colella’s “Seven dwarfs”

� A dwarf is a pattern of
computation and
communication

� Dwarfs are well-
defined targets from
algorithmic, software,
and architecture
standpoints

Slide from “Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004

16

Do dwarfs work well outside HPC?

� Examine effectiveness 7 dwarfs elsewhere

1. Embedded Computing (EEMBC benchmark)

2. Desktop/Server Computing (SPEC2006)

3. Machine Learning
� Advice from Mike Jordan and Dan Klein of UC Berkeley

4. Games/Graphics/Vision

5. Data Base Software
� Advice from Jim Gray of Microsoft and Joe Hellerstein of UC

� Result: Added 7 more dwarfs, revised 2
original dwarfs, renumbered list

17

13 Dwarfs (so far)

1. Dense Linear Algebra

2. Sparse Linear Algebra

3. Spectral Methods

4. N-Body Methods

5. Structured Grids

6. Unstructured Grids

7. MapReduce

8. Combinational Logic

9. Graph Traversal

10. Dynamic Programming

11. Back-track/Branch & Bound

12. Graphical Model Inference

13. Finite State Machine

• Claim is that parallel architecture, language, compiler
… that do these well will run parallel apps of future well
• Note: MapReduce is embarrassingly parallel;

perhaps FSM is embarrassingly sequential?

18

Dwarf Popularity (Red Hot → Blue CoolBlue Cool)

HPC Embed SPEC ML Games DB
1 Dense Matrix
2 Sparse Matrix
3 Spectral (FFT)
4 N-Body
5 Structured Grid
6 Unstructured
7 MapReduce
8 Combinational
9 Graph Traversal

10 Dynamic Prog
11 Backtrack/ B&B
12 Graphical Models
13 FSM

19

7 Questions for Parallelism
Applications:

1. What are the apps?

2. What are kernels of apps?

� Hardware:

3. What are the HW building
blocks?

4. How to connect them?

� Programming Model &
Systems Software:

5. How to describe apps and
kernels?

6. How to program the HW?

� Evaluation:

7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

20

� Power limits leading edge chip designs
� Intel Tejas Pentium 4 cancelled due to power issues

� Yield on leading edge processes dropping
dramatically
� IBM quotes yields of 10 – 20% on 8-processor Cell

� Design/validation leading edge chip is
becoming unmanageable
� Verification teams > design teams on leading edge
processors

HW: What are the problems?

21

HW Solution: Small is Beautiful
� Expect modestly pipelined (5- to 9-stage)
CPUs, FPUs, vector, SIMD PEs
� Small cores not much slower than large cores

� Parallel is energy efficient path to
performance:CV2F
� Lower threshold and supply voltages lowers energy per op

� Redundant processors can improve chip yield
� Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 CPUs

� Small, regular processing elements easier to
verify

� One size fits all?
� Amdahl’s Law ⇒ Heterogeneous processors?

22

Heterogeneous Processors?

� Suppose to run the code 2X faster 1 core
needs 10X resources (power, caches, …)

� Amdahl’s Law: Assume 10% time program
gets no faster on manycore computer (e.g. OS)

16.7190Hetero-

10.5100Homo-

9.2 0100Homo-

SpeedupFast CoresSlow Cores-geneity?

Heterogeneous same area but 1.6X to 1.8X faster

23

Number of Cores/Socket

� We need revolution, not evolution

� Software or architecture alone can’t fix parallel
programming problem, need innovations in both

� “Multicore” 2X cores per generation: 2, 4, 8, …

� “Manycore” 100s is highest performance per unit
area, and per Watt, then 2X per generation:
128, 256, 512, 1024 …

� Multicore architectures & Programming
Models good for 2 to 32 cores won’t evolve to
Manycore systems of 1000’s of processors
⇒⇒⇒⇒ Desperately need HW/SW models that
work for Manycore or run out of steam |
(as ILP ran out of steam at 4 instructions)

24

Some obvious (but neglected)
recommendations for hardware
� Counters and other instrumentation more
important than in the past
� Needed for Feedback directed applications

� Since energy is limit, include energy counters as well as
performance counters

� Include counters that work!
� In past low priority, so ship even if counters broken, or don’t
slow processor to measure it

� If can’t measure feature, won’t use it effectively

� Don’t include features that significantly affect
performance or energy if programmers
cannot accurately measure their impact

25

7 Questions for Parallelism
Applications:

1. What are the apps?

2. What are kernels of apps?

� Hardware:

3. What are the HW building
blocks?

4. How to connect them?

� Programming Model &
Systems Software:

5. How to describe apps and
kernels?

6. How to program the HW?

� Evaluation:

7. How to measure success?

(Inspired by a view of the
Golden Gate Bridge from Berkeley)

26

How to Connect Processors?

� Topic wide open! (HW/SW innovations ASAP!)

� 13 Dwarfs to gain insight into Networks On a Chip
� Sparse connectivity for dwarfs; crossbar is overkill

� No single best topology

� A Bandwidth-oriented network for data
� Most point-to-point message are large and BW bound

� Separate Latency-oriented network for collectives
� Given BW improves > (latency improvement)2

� E.g., Thinking Machines CM-5, Cray T3D, IBM BlueGene/L&P

� Virtual circuit switch??

� Synchronization??
� Transactional memory, full-empty bits, barriers???

� Is cache coherency all we need to coordinate cores?

27

Example: Dwarf Communication
Patterns
� Dense Matrix � Sparse Matrix

28

7 Questions for Parallelism
� Applications:

1. What are the apps?

2. What are kernels of apps?

� Hardware:

3. What are the HW building
blocks?

4. How to connect them?

� Programming Model &
Systems Software:

5. How to describe apps and
kernels?

6. How to program the HW?

� Evaluation:

7. How to measure success? (Inspired by a view of the
Golden Gate Bridge from Berkeley)

29

Programming Model

� Programming model must allow
programmer to balance competing goals of
productivity and implementation efficiency
� Biggest challenge facing manycore systems

⇒ Programming Model high priority

� Past foci of parallel Programming Models:

1. Hardware-centric (e.g., C-variants)

2. Application-centric (e.g., MatLab)

3. Formalism-centric (e.g., Sisal)

30

Human-centric Programming Model

� Obviously, success of models strongly affected by
human beings who use them

� Efficiency, productivity, correctness important,
but no impact of research from psychology???
� Used in HCI, but not in language design or SW engineering

� E.g., a rich theory of human errors [Kantowitz and Sorkin 1983]
[Reason 1990]

� E.g., Transactional Memory helps with human errors
� System ensures correctness even when programmers make
incorrect assumptions about safety of parallelizing code

� Integrating research on human psychology and
problem solving critical to developing successful
parallel Programming Model and environments

31

Testing Human-centric Models

� Follow psychological method to resolve
controversies: Human-subject experiments
� E.g., Efficiency/productivity of small programs of shared
memory vs. message passing by novice programmers:
OpenMP (shared memory) >> MPI (message passing)*

� To make real progress in programming
manycore systems efficiently, use human
subject experiments to resolve open issues
vs. maintaining strong opinions

* L. Hochstein, J. Carver, F. Shull, S. Asgari, V.R. Basili, J.K. Hollingsworth,

M. Zelkowitz. “Parallel Programmer Productivity: A Case Study of Novice

Parallel Programmers,” International Conference for High Performance

Computing, Networking and Storage (SC'05). Nov. 2005.

32

7 Questions for Parallelism
� Applications:

1. What are the apps?

2. What are kernels of apps?

� Hardware:

3. What are the HW building
blocks?

4. How to connect them?

� Programming Model &
Systems Software:

5. How to describe apps and
kernels?

6. How to program the HW?

� Evaluation:

7. How to measure success? (Inspired by a view of the
Golden Gate Bridge from Berkeley)

33

21st Century Code Generation

� Takes a decade for compiler innovations to
show up in production compilers?

� New approach: “Auto-tuners” 1st run variations
of program on computer to find best
combinations of optimizations (blocking,
padding, …) and algorithms, then produce C
code to be compiled for that computer
� E.g., PHiPAC (BLAS), Atlas (BLAS),
Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

� Can achieve 10X over conventional compiler

� One Auto-tuner per kernel or dwarf?
� Exist for Dense Linear Algebra, Sparse Linear Algebra, Spectral

34

Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking
For finite element problem (BCSR) [Im, Yelick, Vuduc, 2005]

35

Some obvious (but neglected)
recommendations for models
� Be independent of number of processors

� Support of proven styles of parallelism
� Task/Thread-level parallelism, data-level parallelism,
and bit/gate-level parallelism

� Have richer set of data types/sizes than were
found in 40-year old IBM 360 architecture!
• 1 bit (Boolean)

• 8 bits (Integer, ASCII)

• 16 bits (Integer, DSP fixed point, Unicode)

• 32 bits (Integer, Single-precision floating point, Unicode)

• 64 bits (Integer, Double-precision floating point)

• 128 bits (Integer, Quad-Precision floating point)

• Large integer (>128 bits) (Crypto)

36

Deconstructing Operating Systems

� Resurgence of interest in virtual machines
� Traditional OSes brittle & too large (AIX GBs DRAM)

� VM monitor thin SW layer btw guest OS and HW

� Advantages
� Security via isolation

� VMs move from failing processor

� Mendel Rosenblum: future of OSes could be
libraries where only functions needed are
linked into app, on top of thin VMM layer
providing protection and sharing of resources
� Everywhere, but great match to 1000s of processors

37

7 Questions for Parallelism
� Applications:

1. What are the apps?

2. What are kernels of apps?

� Hardware:

3. What are the HW building
blocks?

4. How to connect them?

Programming Model & Systems
Software:

5. How to describe apps and
kernels?

6. How to program the HW?

� Evaluation:

7. How to measure success? (Inspired by a view of the
Golden Gate Bridge from Berkeley)

38

How to measure success?

� Easy to write programs that execute
efficiently on manycore computing systems

1. Maximizing programmer productivity

2. Maximizing application performance and
energy efficiency

� Challenges
� Conventional Serial Performance Issues

� Minimizing Remote Accesses

� Balancing Load

� Granularity of Data Movement and
Synchronization

39

1. Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, …
not ready for 1000 CPUs / chip

2. ≈ Only companies can build HW, and it takes years

3. Software people don’t start working hard until
hardware arrives

• 3 months after HW arrives, SW people list everything that must be
fixed, then we all wait 4 years for next iteration of HW/SW

4. How get 1000 CPU systems in hands of researchers
to innovate in timely fashion on in algorithms,
compilers, languages, OS, architectures, … ?

5. Can avoid waiting years between HW/SW iterations?

Problems with “Manycore” Sea Change

40

Build Academic Manycore from FPGAs
� As ≈ 16 CPUs will fit in Field Programmable Gate
Array (FPGA), 1000-CPU system from ≈ 64 FPGAs?
• 8 32-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)

• FPGA generations every 1.5 yrs; ≈ 2X CPUs, ≈ 1.2X clock rate

� HW research community does logic design (“gate
shareware”) to create out-of-the-box, Manycore
� E.g., 1000 processor, standard ISA binary-compatible, 64-bit,
cache-coherent supercomputer @ ≈ 150 MHz/CPU in 2007

� RAMPants: 10 faculty at Berkeley, CMU, MIT, Stanford, Texas, and
Washington

� “Research Accelerator for Multiple Processors” as
a vehicle to attract many to parallel challenge

41

Why Good for Research Manycore?

AAACScalability (1k CPUs)

A (1.5 kw,
0.3 racks)

A+ (.1 kw,
0.1 racks)

D (120 kw,
12 racks)

D (120 kw,
12 racks)

Power/Space
(kilowatts, racks)

AAADCommunity

AADACost of ownership

GPA

Perform. (clock)

Credibility

Reconfigurability

Reproducibility

Observability

Cost (1k CPUs)

C

A (2 GHz)

A+

D

B

D

F ($40M)

SMP

B-

A (3 GHz)

A+

C

D

C

C ($2-3M)

Cluster

B

F (0 GHz)

F

A+

A+

A+

A+ ($0M)

Simulate

A-

C (0.1 GHz)

B+/A-

A+

A+

A+

A ($0.1-0.2M)

RAMP

42

� Completed Dec. 2004 (14x17 inch 22-layer PCB)

Board:
5 Virtex II FPGAs, 18

banks DDR2-400
memory,
20 10GigE conn.

RAMP 1 Hardware

BEE2: Berkeley Emulation Engine 2

By John Wawrzynek and Bob Brodersen with
students Chen Chang and Pierre Droz

$10,000 / board

43

Transactional Memory / RAMP Red

� 8 CPUs with 32KB L1 data-cache with Transactional
Memory support (Kozyrakis, Olukotun… at Stanford)
� CPUs are hardcoded PowerPC405, Emulated FPU

� UMA access to shared memory (no L2 yet)

� Caches and memory operate at 100MHz

� Links between FPGAs run at 200MHz

� CPUs operate at 300MHz

� A separate, 9th, processor runs OS (PowerPC Linux)

� It works: runs SPLASH-2 benchmarks, AI apps,
C-version of SpecJBB2000 (3-tier-like benchmark)

� 1st Transactional Memory Computer!

� Transactional Memory RAMP runs 100x faster
than simulator on a Apple 2GHz G5 (PowerPC)

44

� 8 MicroBlaze cores / FPGA

� 8 BEE2 modules (32 “user”
FPGAs) x 4 FPGAs/module
= 256 cores @ 100MHz
� $10k/board

� Full star-connection
between modules

� It works; runs NAS
benchmarks in UPC

� Cores are softcore
MicroBlazes
(32-bit Xilinx RISC)

� Schultz, Krasnov,
Wawrzynek at Berkeley

256 CPU Message Passing/RAMP Blue

45

Multiprocessing Watering Hole

� Killer app: ≈ All CS Research, Advanced Development

� RAMP attracts many communities to shared artifact
⇒⇒⇒⇒ Cross-disciplinary interactions

� RAMP as next Standard Research/AD Platform?
(e.g., VAX/BSD Unix in 1980s)

Parallel file system

Flight Data Recorder Transactional Memory

Fault insertion to check dependability
Data center in a box

Internet in a box

Dataflow language/computer

Security enhancements

Router design Compile to FPGA

Parallel languages

RAMPRAMP

128-bit Floating Point Libraries

46

Reasons for Optimism towards
Parallel Revolution this time

� End of sequential microprocessor/faster clock rates
� No looming sequential juggernaut to kill parallel revolution

� SW & HW industries fully committed to parallelism
� End of La-Z-Boy Programming Era

� Moore’s Law continues, so soon can put 1000s of
simple cores on an economical chip

� Communication between cores within a chip at
very low latency and very high bandwidth
� Processor-to-Processor fast even if Memory slow

� All cores equal distance to shared main memory
� Less data distribution challenges

� Open Source Software movement means that SW
stack can evolve more quickly than in past

� RAMP as vehicle to ramp up parallel research

47

� 13 Dwarfs as stand-ins for future parallel apps
� Important patterns of computation & communication

� Simple processors! Manycore beats Multicore
� Most efficient MIPS/watt, MIPS/area, MIPS/development $

� Multicore (2-32) solutions may fail at Manycore (250-1000)

� Goal: easy-to-program, efficient manycore
� Need human-centric programming models

� Use Autotuners and Decontructed OSes on VMs

� Use RAMP to accelerate HW/SW generations
� FPGAs to emulate + Architects aid colleagues via gateware

� If you liked the movie, read the book:
“The Landscape of Parallel Computing Research: A View
from Berkeley,” UCB TR EECS-2006-183, 12/18/06

Summary

48

Change directions of research funding?

CADCAD

HardwareHardware

ArchitectureArchitecture

NetworksNetworks

LibrariesLibraries

CompilerCompiler

LanguageLanguage

ApplicationApplication

…StanfordMITCMUCalHistorically:Historically:
Get leading Get leading
experts per experts per
discipline discipline
(across US) (across US)
working working
togethertogether
to work on to work on
parallelismparallelism

49

Change directions of research funding?

CADCAD

HardwareHardware

ArchitectureArchitecture

NetworksNetworks

LibrariesLibraries

CompilerCompiler

LanguageLanguage

ApplicationApplication

…StanfordMITCMUCalTo increase To increase
crosscross--
disciplinary disciplinary
bandwidth, bandwidth,
get experts get experts
per siteper site

working working
together on together on
parallelismparallelism

50

Where to go from here?

� What bold new applications will manycore
enable?

� Can we design architectures that make
parallel programming easier?

� Can we develop highly-productive
programming models that harness the
performance of manycore?

� Berkeley and Stanford are ideal places to do
the cross-disciplinary research needed to
save the IT industry’s desperate bet on
parallelism

51

Acknowledgments

� Berkeley View material comes from discussions with:

� Professors Krste Asanovíc, Ras Bodik, Jim Demmel,
Kurt Keutzer, John Wawrzynek, and Kathy Yelick

� UCB Grad students Bryan Catanzaro, Jike Chong, Joe Gebis,
William Plishker, and Sam Williams

� LBNL:Parry Husbands, Bill Kramer, Lenny Oliker, John Shalf

� See view.eecs.berkeley.edu

� RAMP based on work of RAMP Developers:

� Krste Asanovíc (MIT/Berkeley), Derek Chiou (Texas),
James Hoe (CMU), Christos Kozyrakis (Stanford), Shih-Lien
Lu (Intel), Mark Oskin (Washington), David Patterson
(Berkeley, Co-PI), and John Wawrzynek (Berkeley, PI)

� See ramp.eecs.berkeley.edu

52

Backup Slides for Q&A

53

Really 1000s of processors/chip?

� Cisco Metro 188 cores in 130 nm technology
� 18mm by 18mm, dissipates 35W at a 250MHz clock rate

� Aggregate 50 billion instructions per second

� Embeded in routers

� 5-stage pipelined Tensilica processors with
very small caches, size/core is 0.5 mm2

� Scaling from Moore's Law ⇒
752 cores in 45 nm and 1504 cores in 30 nm
� Intel has taped out a 45-nm technology chip in 2006

54

Example: Vary memory latency, BW

� Target system: TPC-C, Oracle, Linux on
1024 CPUs @ 2 GHz, 64 KB L1 I$ & D$/CPU,
16 CPUs share 0.5 MB L2$, shared 128 MB L3$
� Latency: L1 1 - 2 cycles, L2 8 - 12 cycles, L3 20 - 30 cycles, DRAM
200 – 400 cycles

� Bandwidth: L1 8 - 16 GB/s, L2 16 - 32 GB/s, L3 32 – 64 GB/s,
DRAM 16 – 24 GB/s per port, 16 – 32 DDR3 128b memory ports

� Host system: TPC-C, Oracle, Linux on
1024 CPUs @ 0.1 GHz, 32 KB L1 I$, 16 KB D$
� Latency: L1 1 cycle, DRAM 2 cycles

� Bandwidth: L1 0.1 GB/s, DRAM 3 GB/s per port, 128 64b DDR2
ports

� Use cache models and DRAM to emulate L1$, L2$, L3$ behavior

55

Accurate Clock Cycle Accounting

� Key to RAMP success is cycle-accurate
emulation of parameterized target design

� As vary number of CPUs, CPU clock rate, cache size and
organization, memory latency & BW, interconnect latency &
BW, disk latency & BW, Network Interface Card latency & BW,
…

� Least common divisor time unit to drive emulation?

1. For research results to be credible

2. To run standard, shrink-wrapped OS, DB,…
� Otherwise fake interrupt times since devices relatively too fast

⇒ Good target clock cycle accounting is
high priority for RAMP project

56

RAMP Philosophy

� Build vanilla out-of-the-box examples to attract
software community
� Multiple industrial ISAs, real industrial operating systems, 1000
processors, accurate clock cycle accounting, reproducible,
traceable, parameterizable, cheap to buy and operate, …

� But RAMPants have grander plans (will share)
� Data flow computer (“Wavescalar”) – Oskin @ U. Washington

� 1,000,000-way MP (“Transactors”) – Asanovic @ MIT

� Distributed Data Centers (“RAD Lab”) – Patterson @ Berkeley

� Transactional Memory (“TCC”) – Kozyrakis @ Stanford

� Reliable Multiprocessors (“PROTOFLEX”) – Hoe @ CMU

� X86 emulation (“UT FAST”) – Chiou @ Texas

� Signal Processing in FPGAs (“BEE2”) – Wawrzynek @ Berkeley

57

Related Approaches

� Quickturn, Axis, IKOS, Thara:
� FPGA- or special-processor based gate-level hardware emulators

� HDL mapped to array for cycle and bit-accurate netlist emulation

� No DRAM memory since modeling CPU, not system

� Doesn’t worry about speed of logic synthesis: 1 MHz clock

� Uses small FPGAs since takes many chips/CPU, and pin-limited

� Expensive: $5M

� RAMP’s emphasis is on emulating high-level
system behaviors
� More DRAMs than FPGAs: BEE2 has 5 FPGAs, 96 DRAM chips

� Clock rate affects emulation time: >100 MHz clock

� Uses biggest FGPAs, since many CPUs/chip

� Affordable: $0.1 M

58

RAMP’s Potential Beyond Manycore

� Attractive Experimental Systems Platform:
Standard ISA + standard OS + modifiable
+ fast enough + trace/measure anything

� Generate long traces of full stack: App, VM, OS, …

� Test hardware security enhancements in the wild

� Inserting faults to test availability schemes

� Test design of switches and routers

� SW Libraries for 128-bit floating point

� App-specific instruction extensions (≈Tensilica)

� Alternative Data Center designs
� Akamai vs. Google: N centers of M computers

59

Potential to Accelerate Manycore
� With RAMP: Fast, wide-ranging exploration of
HW/SW options + head-to-head competitions to
determine winners and losers

� Common artifact for HW and SW researchers ⇒
innovate across HW/SW boundaries

�Minutes vs. years between “HW generations”

� Cheap, small, low power ⇒ Every dept owns one

� FTP supercomputer overnight, check claims locally

� Emulate any Manycore ⇒ aid to teaching parallelism

� If HP, IBM, Intel, M/S, Sun, …had RAMP boxes
⇒ Easier to carefully evaluate research claims
⇒ Help technology transfer

� Without RAMP: One Best Shot + Field of Dreams?

60

RAMP Supporters:
� Gordon Bell (Microsoft)

� Ivo Bolsens (Xilinx CTO)

� Jan Gray (Microsoft)

� Norm Jouppi (HP Labs)

� Bill Kramer (NERSC/LBL)

� Konrad Lai (Intel)

� Craig Mundie (MS CTO)

� Jaime Moreno (IBM)

� G. Papadopoulos (Sun CTO)

� Jim Peek (Sun)

� Justin Rattner (Intel CTO)

� Michael Rosenfield (IBM)

� Tanaz Sowdagar (IBM)

� Ivan Sutherland (Sun Fellow)

� Chuck Thacker (Microsoft)

� Kees Vissers (Xilinx)

� Jeff Welser (IBM)

� David Yen (Sun EVP)

� Doug Burger (Texas)
� Bill Dally (Stanford)
� Susan Eggers (Washington)
� Kathy Yelick (Berkeley)

RAMP Participants: Arvind (MIT), Krste Asanovíc,
Derek Chiou (Texas), James Hoe (CMU), Christos Kozyrakis (Stanford),
Shih-Lien Lu (Intel), Mark Oskin (Washington), David Patterson (Berkeley,
Co-PI), Jan Rabaey (Berkeley), and John Wawrzynek (Berkeley, PI)

61

RAMP Project Status

� NSF infrastructure grant awarded 3/06
� 2 staff positions (NSF sponsored), no grad students

� IBM Faculty Awards to RAMPants 6/06
� Krste Asanovic (MIT), Derek Chiou (Texas), James Hoe (CMU),
Christos Kozyrakis (Stanford), John Wawrzynek (Berkeley)

� 3-day retreats with industry visitors
� “Berkeley-style” retreats 1/06 (Berkeley), 6/06
(ISCA/Boston), 1/07 (Berkeley), 6/07 (ISCA/San Diego)

� RAMP 1/RDL short course
� 40 people from 6 schools 1/06

62

Why RAMP More Credible?

� Starting point for processor is debugged
design from Industry in HDL

� Fast enough that can run more software,
more experiments than simulators

� Design flow, CAD similar to real hardware
� Logic synthesis, place and route, timing analysis

� HDL units implement operation vs.
a high-level description of function
� Model queuing delays at buffers by building real buffers

� Must work well enough to run OS
� Can’t go backwards in time, which simulators can unintentionally

� Can measure anything as sanity checks

63

Dwarf Communication Patterns

� Spectral (e.g., FFT) � N-Body Methods

64

Dwarf Communication Patterns

� Structured Grid � MapReduce
Map Reduce Point-to-Point Communication

65

Best Sparse Blocking for 8 Computers

� All possible column block sizes selected for 8

computers; How could compiler know?

IBM
Power 3

Intel/HP
Itanium 2

IBM Power 4,
Intel/HP
Itanium

Sun Ultra 2,
Sun Ultra 3,
AMD Opteron

Intel
Pentium

M
8

4

2

1

1 2 4 8

ro
w

 b
lo

ck
 s

iz
e

(r
)

column block size (c)

