
EE378B Inference, Estimation and Information Processing

Final: Biclustering
Andrea Montanari

This final is assigned Friday, March 19 at 12:00 pm PST and be due on Saturday, March 20 at 12:00
PM PST. Solutions should be submitted via Gradescope. Please send your solution by email to Andrea
(montanari@stanford.edu) at the same time.

You are allowed to use books, notes and papers, but you should provide arguments for anything that was
not proved in class. You can also contact Andrea and Qijia for reasonable questions about the text. You are
not allowed to consult/collaborate with your colleagues or anybody else.

We will consider a simple model for biclustering. We are given a data matrix X ∈ Rm×n which is
generated as follows. Partition the set of rows in k equal-sized groups [m] = R1 ∪ · · · ∪Rk, |Ri| = m/k, and
the set of columns into ` equal-sized groups [n] = C1 ∪ · · · ∪ C`, |Ci| = n/`. For a given row index j ∈ [m],
we denote by τj ∈ [k] the group to which j belongs, and for a given column index i ∈ [n], we denote by
σi ∈ [`] the index of the group to which i belongs. In other words, τj = t if and only if j ∈ Rt, and σi = s if
and only if i ∈ Cs.
[Throughout we use the notation [n] := {1, 2, . . . , n}.]

We will write σ = (σi)i≤n, τ = (τj)j≤m, for the vertex labels. We will assume that rows and columns are
reordered uniformly at random. Equivalently σ and τ are uniformly random vectors with entries σi ∈ [`],
τj ∈ [k], subject to having equal number of entries of each value.

The distribution of X is parametrized by m,n, k, `, and v ∈ R≥0, and by a matrix µ ∈ Rk×`. We then
set

Xji = µτj ,σi + vnGji . (1)

We will assume for simplicity (Gji)j≤m,i≤n ∼iid N(0, 1), and m to be proportional to n, i.e., m = δ · n, for
δ ∈ (0,∞). (If you prefer, you can focus on the case δ = 1.) We will assume that µ is fixed independent of
n, and vn can change with n.

Our objective is to estimate the column labels σ ∈ [`]n, up to a global permutation of the label values
{1, 2, . . . , `}.

In each question below, you are required to justify your answer. We do not require a fully rigorous proof,
but higher credit will be given to more complete and rigorous justifications.

(1) Define a metric for the estimation of σ, which is invariant under permutation of the label values.
Namely, given a permutation π : [`] → [`], let σπ := (π(σ1), . . . , π(σn)) be the vector obtained by
permuting the label values according to π. We want a metric that takes σ, σ̂ ∈ [`]n (where σ are the
true values, and σ̂ are the estimates), and returns Q(σ, σ̂), such that Q(σ, σ̂) = Q(σπ, σ̂) for all π.
Further, we would like this metric to be normalized so that Q(σ, σ̂) ∈ [0, 1], with Q(σ,σ) = 1.

(2) A first algorithmic idea would be to sum up each column of X, i.e., compute y = XT1, and then
cluster the entries of y to estimate σ (this can be done by ordering these entries). Assume vn = nγ .
For which values of γ do you expect this method to be successful? For which matrices µ this method
can be successful? Are there matrices µ for which this approach is never successful?

[Here ‘successful’ means that the the expected value of the metric defined above converges to 1,
EQ(σ, σ̂)→ 1 as n→∞.]
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(3) Hereafter, assume µ1` = d1 · 1k, and µT1k = d2 · 1` for some constants d1, d2. Design a spectral
algorithm to estimate σ. The algorithm should output σ̂ ∈ [`]n. Again, assume vn = nγ . For which
values of γ do you expect your approach to be successful, in the sense of performing better than random
guessing in the large n limit?

[Hint: We expect the approach to work well if γ < γ∗, and not for γ > γ∗. You are required to
determine γ∗.]

(4) Consider the special case k = ` = 2, and vn = ρnγ∗ with ρ a sufficiently small constant. Will the
spectral method at the previous point perform better than random guessing in the large n limit?

(5) As at the previous point, consider the special case k = ` = 2, and vn = ρnγ∗ . Implement your spectral
method and carry out numerical simulations to confirm your answer at the previous point. How small
ρ must be empirically for the algorithm to behave better than random guessing?

(6) Again, consider the special case k = ` = 2. In this case we can rename the labels so that σ ∈ {+1,−1}n,
and τ ∈ {+1,−1}m. Consider the following leave-one-out approach. In order to estimate whether
σi = σj :

(i) Remove columns i, j from the matrix to construct X(ij) ∈ Rm×(n−2).

(ii) Apply the spectral method at the previous point to X(ij) to estimate τ , and let τ̂ ∈ {+1,−1}m
be the estimate. If needed, modify this estimate so that 〈τ̂ ,1m〉 = 0 (assume m even.)

(iii) Estimate σi, σj as σ̂i = sign(〈τ̂ ,Xei〉), σ̂j = sign(〈τ̂ ,Xej〉).

As before, set vn = ρnγ∗ . Considering n → ∞ first, how does P(σ̂iσ̂j 6= σiσj) behave for small ρ?
Does it approach 0 as ρ decreases? If yes, how quickly does it approach 0?

[Hint: In order to address these questions, you could try to derive an upper bound of the form P(σ̂iσ̂j 6=
σiσj) ≤ F (ρ) + on(1), and then show that F (ρ)→ 0 as ρ→ 0.]

(7) Describe a semidefinite programming relaxation of the biclustering problem.
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