### Transform coding - topics

- Principle of block-wise transform coding
- Properties of orthonormal transforms
- Discrete cosine transform (DCT)
- Bit allocation for transform coefficients
- Threshold coding
- Typical coding artifacts
- Fast implementation of the DCT



# Principle of block-wise transform coding



# Properties of orthonormal transforms



- Parseval's Theorem holds: transform is a rotation of the
- signal vector around the origin of an  $N^2$ -dimensional vector space.

```
Bernd Girod: EE368b Image and Video Compression Transform Coding no. 3
```

# Separable orthonormal transforms, I

 An orthonormal transform is separable, if the transform of a signal block of size NxN can be expressed by



|      |   |   |   |   | ٠  |   |   |
|------|---|---|---|---|----|---|---|
|      | o | С |   |   |    |   |   |
|      |   |   | T | - | t  |   |   |
| - 84 |   | 2 |   | a | P  | ٢ |   |
| 13   |   |   |   | 8 | ۰. | 2 |   |
| - 55 | ٠ |   |   |   |    |   |   |
|      |   |   |   |   |    |   | G |
|      |   |   |   | - | 5  | 5 |   |

Bernd Girod: EE368b Image and Video Compression

 2-d transform realized by 2 one-dimensional transforms (along rows and columns of the signal block)



# Criteria for the selection of a particular transform

- Decorrelation, energy concentration (e.g., KLT, DCT, . . .)
- Visually pleasant basis functions (e.g., pseudo-randomnoise, m-sequences, lapped transforms)
- Low complexity of computation



#### Karhunen Loève Transform (KLT)

- Karhunen Loève Transform (KLT) yields decorrelated transform coefficients.
- Basis functions are eigenvectors of the covariance matrix of the input signal.
- KLT achieves optimum energy concentration.
- Disadvantages:
  - KLT dependent on signal statistics
  - KLT not separable for image blocks
  - Transform matrix cannot be factored into sparse matrices.



#### Comparison of various transforms, I



#### Comparison of various transforms, II

 Energy concentration measured for typical natural images, block size 1x32 [Lohscheller]:



#### Discrete cosine transform and discrete Fourier transform

- Transform coding of images using the Discrete Fourier Transform (DFT):
  - · For stationary image statistics, the energy concentration properties of the DFT converge against those of the KLT for large block sizes.
  - Problem of blockwise DFT coding: blocking effects due to circular topology of the DFT and Gibbs phenomena.
  - Remedy: reflect image at block boundaries, DFT of larger symmetric block -> "DCT"





Bernd Girod: EE368b Image and Video Compression

#### DCT

- Type II-DCT of blocksize MxM is defined by transform matrix A containing elements
- 2D basis functions of the DCT:



Amplitude distribution of the DCT coefficients

 Histograms for 8x8 DCT coefficient amplitudes measured for natural images (from Mauersberger):

| - 1 |   | L |              |                    |   |                    | Å.                 |
|-----|---|---|--------------|--------------------|---|--------------------|--------------------|
| L   |   |   |              |                    | L | $\mathbf{\lambda}$ | $\mathbf{\lambda}$ |
|     |   |   |              |                    |   | Å.                 |                    |
|     |   |   | L            |                    | X | $\mathbf{X}$       | $\mathbf{L}$       |
|     | A |   |              |                    |   |                    | $\mathbf{A}$       |
|     |   | X | $\mathbf{I}$ |                    |   | $\mathbf{A}$       |                    |
|     |   | X | X            | $\mathbf{\Lambda}$ |   |                    |                    |
|     |   | X |              | A                  |   |                    |                    |

- DC coefficient is typically uniformly distributed.
- For the other coefficients, the distribution resembles a Laplacian pdf.

```
Bernd Girod: EE368b Image and Video Compression
```

### Bit allocation for transform coefficients I

<u>Problem</u>: divide bit-rate R among MxM transform coefficients i such that resulting distortion D is minimized. <u>Assumptions</u>



lead to "Pareto condition"



# Bit allocation for transform coefficients II

 Additional assumptions "Gaussian r.v." and "mse distortion" yield the optimum rate for each transform coefficient *i*:



 In practice, with variable length coding, one often uses "distortion allocation" instead of bit allocation

#### Bit allocation for transform coefficients III

Extension to weighted m.s.e. distortion measure

$$D = \sum_{i} w_i D_i$$

$$R_{i} = \max\left\{0, \frac{1}{2}\log_{2}\left(\frac{w_{i}\boldsymbol{s}_{i}^{2}}{\boldsymbol{q}}\right)\right\} \text{ bit}$$
$$D_{i} = \min\left\{\boldsymbol{s}_{i}^{2}, \frac{\boldsymbol{q}}{w_{i}}\right\}$$

• Often implemented by scaling coefficients by  $(w_i)^{-1/2}$  prior to quantization ("weighting matrix")

Bernd Girod: EE368b Image and Video Compression

Transform Coding no. 15

# Threshold coding, I

- Transform coefficients that fall below a threshold are discarded.
- Implementation by uniform quantizer with threshold characteristic:
  Quantizer



 Positions of non-zero transform coefficients are transmitted in addition to their amplitude values. Efficient encoding of the position of non-zero transform coefficients: zig-zag-scan + run-level-coding





Bernd Girod: EE368b Image and Video Compression

Transform Coding no. 17

## Threshold coding, III



# Detail in a block vs. DCT coefficients transmitted



# Typical DCT coding artifacts

DCT coding with increasingly coarse quantization, block size 8x8







quantizer stepsize for AC coefficients: 25

quantizer stepsize for AC coefficients: 100

quantizer stepsize for AC coefficients: 200



Bernd Girod: EE368b Image and Video Compression

## Adaptive transform coding



## Influence of DCT block size

 Efficiency as a function of blocksize NxN, measured for 8 bit quantization in the original domain and equivalent quantization in the transform domain



Block size 8x8 is a good compromise.

Fast DCT algorithm I



Fast DCT algorithm II



## Transform coding: summary

- Orthonormal transform: rotation of coordinate system in signal space
- Purpose of transform: decorrelation, energy concentration
- KLT is optimum, but signal dependent and, hence, without a fast algorithm
- DCT shows reduced blocking artifacts compared to DFT
- Bit allocation proportional to logarithm of variance
- Threshold coding + zig-zag-scan + 8x8 block size is widely used today (e.g. JPEG, MPEG, ITU-T H.263)
- Fast algorithm for scaled 8-DCT: 5 multiplications, 29 additions

