

Conditional entropy of the video signal

previous line of current field line of interlaced previous field

current line of current field

component	T_p [ns]	$H(S_0)$	$H(S_0 \mid S_1)$	$H(S_0 \mid S_3)$
Y	100	7.34	4.66	4.85
R-Y	500	5.57	3.76	2.96
B-Y	500	5.24	3.75	2.93

Averages in bit/sample. 3 EBU test slides, 3 SMPTE test slides, uniform quantization to 256 levels.

Bernd Girod: EE368b Image and Video Compression

0.1111

0.111

0.1101 0.11

0.1011

0.0111

0.011

0.0101 0.01 0.0011 0.001 0.0001 p(s)

0.101 0.1001

0.1

- Universal entropy coding algorithm for strings
- Representation of a string by a subinterval of the unit interval [0,1)
- Width of the subinterval is approximately equal to the probability of the string p(s)
- Interval of width p(s) is guaranteed to contain one number that can be represented by b binary digits, with

$$-\log(p(s)) + 1 \le b < -\log(p(s)) + 2$$

 Each interval can be represented by a number 0 ^L₀ which needs 1 to 2 bits more than the ideal
code word length

Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 23

Arithmetic Coding II

Multiplication-free algorithm

- Normalize interval width to $0.75 \le A < 1.5$ by binary shift after each symbol
- Approximation $p(L) \le p(M)$:

$$Ap(L) \approx p(L)$$

 $Ap(M) = A(1 - p(L)) \approx A - p(L)$

 Multiplication-free algorithm for non-binary alphabets (Rissanen & Mohiuddin, 1989)

Bernd Girod: EE368b Image and Video Compression

Redundancy reduction by prediction

Lossless Compression no. 25

 Much simpler than a conditional Huffman coder is a predictive coder:

- Principle of the predictive coder:
 - S_0 is the current sample of the original signal S.
 - \hat{S}_0 is a prediction for S_0 calculated from previous samples $S_1, S_2, ..., S_N.$
 - *e* is the prediction error, with greatly reduced statistical dependencies between adjacent samples.
 - The receiver can reconstruct S without loss.

Entropy and variance of the prediction error

- With linear prediction of video signals the prediction error pdf is typically Laplacian.
- Minimization of prediction error variance vs. entropy typically leads to very similar results.

Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 27

Statistical optimization of a nonlinear predictor

Prediction obtained from previous samples

$$\underline{S} = (S_1, S_2, \dots, S_N)$$

Variational problem

$$E\{[S_0 - f(\underline{S})]^2\} \longrightarrow \min$$

Solution:

$$\hat{S} = f(\underline{S}) = E\{S_0 \mid \underline{S}\}\$$
$$= \sum_{S_0} S_0 P(S_0 \mid \underline{S})$$

Solution can be stored in table of size 2^{8N} for 8-bit representation of $S_1, S_2, ..., S_N$.

Statistical optimization of a linear predictor I

- Assume zero-mean: $E{S}=0$
- Linear predictor:

$$\hat{S}_0 = a_1 S_1 + a_2 S_2 + \dots + a_N S_N$$

Variance of the prediction error:

$$s_{e}^{2} = \sum_{i=0}^{N} \sum_{j=0}^{N} a_{i}a_{j}R_{ij}$$
 with $a_{0} = -1$

• Autocorrelation matrix can be measured for a given signal.

$$R_{ij} = E\{S_i S_j\}$$

Bernd Girod:

Bernd Girod: EE368b Image and Video Compression

Lossless Compression no. 29

Statistical optimization of a linear predictor II

Minimization of the prediction error variance with

$$\frac{\partial \boldsymbol{s}_{e}^{2}}{\partial a_{i}} = 0$$
 for all $i = 1, ..., N$

Leads to "orthogonality principle":

$$E\{eS_i\} = 0$$
 for all $i = 1, ..., N$

- Optimum prediction coefficients $a_1, a_2, ..., a_N$ obtained by inverting *N*x*N* autocorrelation matrix R_{ii}
- Orthogonality principle implies decorrelation of the prediction error:

 $E\{e_0e_i\} = E\{e_0\}E\{e_i\} = 0$ for i = 1, 2, ..., N

Bernd Girod: EE368b Image and Video Compression

Statistical optimization of a linear predictor III

• If the signal is not zero-mean, i.e. $E{S} \neq 0$

$$\hat{S}_0 = a_{DC} + a_1 S_1 + \dots + a_N S_N$$
 with $a_{DC} = E\{S\}(1 - \sum_{i=1}^N a_i)$

- For Gaussian random processes decorrelation implies statistical independence.
- Prediction gain:

$$G = \frac{1}{2}\log_2(\frac{\mathbf{s}_s^2}{\mathbf{s}_e^2}) \text{ bit } = \frac{1}{2}\log_2(\frac{E\{S^2\} - E^2\{S\}}{\mathbf{s}_e^2}) \text{ bit }$$

Rule of thumb: 6 dB = 1 bit

Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 31

Statistically optimized predictors for the luminance signal Y

previous line of current field line of interlaced previous field

current line of current field

Constraint: 3 bit wordlength of the prediction coefficients

$H(S_0)$	Predictor			H(e)	Oritorian
[bit]	a_1	a_2	a_3	[bit]	Criterion
7.34	7/8	-5/8	3/4	4.30	minimum variance
734	7/8	-1/2	5/8	4.29	minimum entropy

Average of 3 EBU test slides, 3 SMPTE test slides,

Bernd Girod: EE368b Image and Video Compression

Statistically optimized predictors for the color difference signals R-Y and B-Y

• Signal R-Y: sampling interval T_P = 500 ns

$H(S_{\circ})$	Predictor			H(e)	0
[bit]	a_1	a_2	a_3	[bit]	Criterion
5.57	5/8	-1/2	7/8	2.87	minimum variance
5.57	3/8	-1/4	7/8	2.82	minimum entropy

• Signal B-Y: sampling interval T_P = 500 ns

$H(S_0)$	Predictor			H(e)	
[bit]	a_1	a_2	a_3	[bit]	Criterion
5.24	3/8	-1/4	7/8	2.46	minimum variance
5.24	3/8	-1/4	7/8	2.46	minimum entropy

Average of 3 EBU test slides, 3 SMPTE test slides, uniform quantization to 256 levels.

Bernd Girod: EE368b Image and Video Compression

Lossless Compression no. 33

Optimizing the predictor in the frequency domain

Power spectrum of the prediction error

$$\Phi_{ee}(\boldsymbol{w}_{x}, \boldsymbol{w}_{y}) = \Phi_{ss}(\boldsymbol{w}_{x}, \boldsymbol{w}_{y}) |1 - P(\boldsymbol{w}_{x}, \boldsymbol{w}_{y})|^{2}$$

power spectrum of the video signal $\ensuremath{\mathsf{S}}$

prediction transfer function

Mean squared error criterion

$$\boldsymbol{s}_{e}^{2} = \frac{1}{4\boldsymbol{p}^{2}} \iint \Phi_{ss}(\boldsymbol{w}_{x}, \boldsymbol{w}_{y}) |1 - P(\boldsymbol{w}_{x}, \boldsymbol{w}_{y})|^{2} d\boldsymbol{w}_{x} d\boldsymbol{w}_{y} \longrightarrow \min$$

Constraint: causality of $P(\boldsymbol{w}_x, \boldsymbol{w}_y)$

Solution: prewhitening filter

$$|1-P(\boldsymbol{w}_x,\boldsymbol{w}_y)|^2 = \frac{\boldsymbol{s}_e^2}{\boldsymbol{\Phi}_{ss}(\boldsymbol{w}_x,\boldsymbol{w}_y)}$$

Bernd Girod: EE368b Image and Video Compression

Summary: lossless compression

- Redundancy reduction exploits the properties of the signal source.
- Properties of the signal source can be described statistically.
- Entropy is the lower bound for the average code word length.
- Huffman code is optimum entropy code.
- Huffman coding: needs code table.
- Arithmetic coding is a universal coding method for encoding strings of symbols.
- Arithmetic coding does not need a code table.
- For an efficient, independent coding of symbols, statistical dependencies have to be removed.

