

Digital communication system

Shannon's separation principle

- Exploit redundancy.
 - Take advantage of patterns in the signal.
 - Describe frequently occuring events efficiently.
 - Lossless coding: completely reversible
- Introduce acceptable deviations.
 - Remove information that the humans cannot perceive.
 - Match the signal resolution (in space, time, amplitude) to the application
 - Lossy coding: irreversible distortion of the signal

Lossless compression in lossy compression systems

 Almost every lossy compression system contains a lossless compression system

Topics in lossless compression

- Binary decision trees and variable length coding
- Entropy and bit-rate
- Huffman codes
- Statistical dependencies in image signals
- Sources with memory
- Arithmetic coding
- Redundancy reduction by prediction

Bernd Girod: EE368b Image and Video Compression

Lossless Compression no. 5

Example: 20 Questions

- Alice thinks of an outcome (from a finite set), but does not disclose his selection.
- Bob asks a series of yes-no questions to uniquely determine the outcome chosen. The goal of the game is to ask as few questions as possible <u>on average</u>.
- Our goal: Design the best strategy for Bob.

 Observation: The collection of questions and answers yield a binary code for each outcome.

Fixed length codes

- Average description length for *K* outcomes $l_{av} = \log_2 K$
- Optimum for equally likely outcomes
- Verify by modifying tree

- If outcomes are NOT equally probable:
 - Use shorter descriptions for likely outcomes
 - Use longer descriptions for less likely outcomes
- Intuition:
 - Optimum balanced code trees, i.e., with equally likely outcomes, can be pruned to yield unbalanced trees with unequal probabilities.
 - The unbalanced code trees such obtained are also optimum.
 - Hence, an outcome of probability p should require about

$$\log_2 \frac{1}{p}$$
 bits

Bernd Girod: EE368b Image and Video Compression

Lossless Compression no. 9

Entropy of a memoryless source

 Let a memoryless source be characterized by an ensemble U₀ with:

Alphabet
$$\{a_0, a_1, a_2, ..., a_{K-1}\}$$

Probabilities $\{P(a_0), P(a_1), P(a_2), ..., P(a_{K-1})\}$

- Shannon: information conveyed by message "a_k":
 I(a_k) = -log(P(a_k))
- "Entropy of the source" is the <u>average</u> information contents:

$$H(U_0) = E\{I(a_k)\} = -\sum_{k=0}^{K-1} P(a_k) \log(P(a_k)) = -\sum_{u_0} P(u_0) \log(P(u_0))$$

For "log" = "log₂" the unit is bits/symbol

Lossless Compression no. 10

Properties of entropy:

$$H(U_0) \quad 0$$
$$\max\{H(U_0)\} = \log(K) \text{ with } P(a_j) = P(a_k) \quad j,k$$

- The entropy $H(U_0)$ is a lower bound for the average word length l_{av} of a decodable variable-length code for the symbols u_0 .
- Conversely, the average wordlength l_{av} can approach $H(U_0)$, if sufficiently large blocks of symbols are encoded jointly.
- Redundancy of a code:

$$R = l_{av} - H(U_0)$$

Bernd Girod: EE368b Image and Video Compression

Lossless Compression no. 11

Encoding with variable word length

A code without redundancy, i.e.

$$l_{av} = H(U_0)$$

is achieved, if all individual code word length

$$l_{cw}(a_k) = -\log(P(a_k))$$

 For binary code words, all probabilities would have to be binary fractions:

$$P(a_k) = 2^{-l_{cw}(a_k)}$$

Example

<i>a</i> _{<i>i</i>}	$P(a_i)$	redundant code	optimum code
a_0	0.500	00	0
a_1	0.250	01	10
a_2	0.125	10	110
a_3	0.125	11	111

 $H(U_0) = 1.75$ bits / symbol $l_{av} = 1.75$ bits / symbol R = 0

Bernd Girod: EE368b Image and Video Compression

- Design algorithm for variable length codes proposed by Huffman (1952) always finds a code with minimum redundancy.
- Obtain code tree as follows:
 - 1 Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol.
 - **2** Calculate the probability of the auxiliary symbol.
 - 3 If more than one symbol remains, repeat steps 1 and 2 for the new auxiliary alphabet.
 - 4 Convert the code tree into a prefix code.

Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 13

Probability density function of the luminance signal Y

Probability density function of the color difference signals R-Y and B-Y

- Joint sources generate N symbols simultaneously. A coding gain can be achieved by encoding those symbols jointly.
- The lower bound for the average code word length is the joint entropy:

 $H(U_1, U_2, ..., U_N) = - \prod_{u_1 \ u_2 \ u_N} P(u_1, u_2, ..., u_N) \log(P(u_1, u_2, ..., u_N))$

It generally holds that

 $H(U_1, U_2, ..., U_N)$ $H(U_1) + H(U_2) + ... + H(U_N)$

with equality, if $U_1, U_2, ..., U_N$ are statistically independent.

Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 17

Statistical dependencies between video signal components Y, R-Y, B-Y

 Data: 3 EBU-, 3 SMPTE test slides, each component Y, R-Y, B-Y uniformly quantized to 64 levels

$H_0 = 3x6$ bits / sample	=	18	bits/sample
$H(U_{Y}, U_{R-Y}, U_{B-Y})$	=	9.044	bits/sample
$H(U_Y) + H(U_{R-Y}) + H(U_{B-Y})$	=	11.218	bits/sample
Н	=	2.174	bits/sample

- Statistical dependency between R, G, B is much stronger.
- If joint source Y, R-Y, B-Y is treated as a source with memory, the possible gain by joint coding is much smaller.

Neighboring samples of the video signal are not statistically independent:

"source with memory"

 $P(u_T) \quad P(u_T | u_{T-1}, u_{T-2}, \dots, u_{T-N})$

- A source with memory can be modeled by a Markov random process.
- Conditional probabilities of the source symbols u_T of a Markov source of order N:

Bernd Girod: EE368b Image and Video Compression

Lossless Compression no. 19

Entropy of source with memory

Markov source of order N: conditional entropy

 $H(U_T | Z_T) = H(U_T | U_{T-1}, U_{T-2}, ..., U_{T-N})$ $= E\{-\log(p(U_T | U_{T-1}, U_{T-2}, \dots, U_{T-N}))\}$ $= - u_{T} \dots u_{T-N} p(u_T, u_{T-1}, u_{T-2}, \dots, u_{T-N}) \log(p(u_T | u_{T-1}, u_{T-2}, \dots, u_{T-N}))$

 $H(U_T | Z_T) = H(U_T)$ (equality for memoryless sources)

- Average code word length can approach $H(U_T | Z_T)$ e.g. with a switched Huffman code.
- Number of states for an 8-bit video signal:

Bernd Girod: EE368b Image and Video Compression

Lossless Compression no. 20