
O. Feinstein, EE368 Digital Image Processing – Final Report 
 

1 

  
Abstract— A visual code marker is an 11x11 element pattern 

with two fixed guide bars and three fixed cornerstones, which is 
used to uniquely label everyday objects such as CDs, DVDs, 
books, etc. Each marker has an 83-bit data code that can be 
captured using any digital camera and transmitted over the 
Internet to a central database that stores more information about 
the labeled object. This paper describes a method to find the 
locations of visual code markers in a 24-bit RGB image and read 
the 83-bit data embedded in each marker. Alternatives at critical 
stages of the algorithm are discussed. Many different images are 
shown to prove robustness. 

 
Index Terms— digital image processing, visual code markers, 

adaptive thresholding, rotation and scale invariance. 

I. INTRODUCTION 
The goal of this project is to find all of the visual code 

markers in a 24-bit RGB image regardless of orientation using 
MATLAB. Upon identifying a visual code marker, the origin 
is reported as well as the 83-bit data embedded in the marker. 

After explaining the method used in this study, the results 
are shown and discussed. 

II. METHODOLOGY 

A. Definition of Visual Code Marker 
A visual code marker is defined as an 11x11 square pattern 

with two guide bars and three cornerstones as shown in Figure 
1 below. The 83 data bits are enclosed in red, and are read 
column by column, from top to bottom. A black square 
represents a data bit of 1, and a white square is a data bit of 0. 
The vertical guide bar is seven elements long and the 
horizontal guide bar is five. The origin (0,0) is defined as the 
upper left cornerstone, while the upper right cornerstone and 
lower left cornerstone are (10,0) and (0,10), respectively. 

 

 
Fig. 1.  A visual code marker example. 

 
Manuscript received June 02, 2006.  
O. Feinstein is with the Electrical Engineering Department at Stanford 

University, Stanford, CA 94305 USA (email: feinstei@stanford.edu). 

B. Overview of Algorithm 
The algorithm implemented can be described as a five-stage 

process (see Figure 2). The first stage takes the input image 
and pre-processes it to produce a cleaner image for the next 
stage. The second stage creates a binary image by using a row-
by-row adaptive threshold. The third stage labels all of the 
unique regions and extracts useful information such as 
eccentricity, orientation, area, etc. The fourth stage searches 
for a candidate vertical guide bar, and if found, searches for 
the horizontal guide bar and the three cornerstones. Using the 
three cornerstone pixel coordinates as well as the centroid of 
the horizontal guide bar, the fifth stage defines the 11x11 
element plane and outputs the 83 data bits for each marker 
found.  

 

 
Fig. 2.  Five-stage algorithm with outputs of each phase in red. 

 

C. Pre-processing 
Since color is not needed in identifying the visual code 

markers, the first step in the algorithm is to convert the 24-bit 
RGB input image to a gray-scale image. However, instead of 
using the MATLAB function rgb2gray, [1] suggests 
weighting the gray-scale image as half red and half green 
because the blue component of the image has poor quality for 
sharpness and contrast. This optimization is also less 
computationally intensive and saves a fraction of a second in 
the overall run-time. 

Occasionally, the input image can be noisy, thus further pre-
processing is needed. For this application, the most frequent 
type of noise is blurring either due to motion of the camera 

Identifying and Reading Visual Code Markers 
Oren Feinstein, Electrical Engineering Department, Stanford University 



O. Feinstein, EE368 Digital Image Processing – Final Report 
 

2 

while acquiring the image or a low quality camera as is 
common to cellular telephones. With that knowledge, a high 
pass filter is needed to counteract the low pass characteristics 
of the image. 

Even if there is no noise in the image, a high pass filter is 
used to further emphasize the transitions between black and 
white, which is prevalent throughout the visual code marker. 
A 3x3 kernel is constructed to convolve with the gray-scale 
image: 

 
0 -5 0 
-5 21 -5 
0 -5 0 

 
But, since this high pass filter strongly amplifies high 

frequency components, a simple 3x3 average filter is 
developed to attempt to maintain the fidelity of the image: 

 
1/9 1/9 1/9 
1/9 1/9 1/9 
1/9 1/9 1/9 

 
The combination of the high pass filter followed by an 

average filter preserves the quality of the image and simplifies 
the task of the adaptive threshold since the visual code marker 
gets boosted in the image. Figure 3 shows the results of pre-
processing for a given input image. 

An alternative to the high pass and average filter 
combination was to use the scale-by-max color balancing 
technique on the gray-scale image. The idea was to boost the 
white components of the visual code marker and leave the 
black components relatively unaffected. However, the results 
were poor at best – the thresholding stage did not define the 
transitions between black and white nearly as well as the high 
pass and average filter. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.  The pre-processing stage. a) 24-bit RGB input image. b) gray = (red + 
green) / 2. c) Gray image after using high pass filter. d) Gray image after 
using high pass filter and then average filter. 

  

D. Adaptive Thresholding 
After pre-processing the image, the next step is to create a 

binary image as shown in Figure 4, where dark pixels are 
represented by the value 1 and light pixels are 0. According to 
[1], an adaptive threshold with a zigzag traversal of the scan 
lines is best. However, upon implementation, undesirable 
effects occur at even scan lines. Thus, a reasonable adaptation 
to [1] is to traverse row-by-row without traversing in a zigzag 
manner. Specifically, an average gs(n) is kept while passing 
through the image: 

 
gs(n) = gs(n-1) * (1 – (1/s)) + pn 

 
where pn is the gray value of the current pixel, s = (1/8) * 
width of the image, and gs(0) = (1/2)*255*s. The pixel value 
binary_img(n) is selected by: 
 

binary_img(n) =   1, if pn < gs(n)/s * (100-t)/100 
 0, otherwise 

 
with t = 28. 
 Using a constant threshold does not produce results like the 
adaptive threshold. Particularly, edges are not defined in the 
right places and there are more false positives detected as dark 
pixels. No morphological operations can be used to create a 
cleaner binary image because erosion may remove the 
cornerstones since they are innately small and dilation can 
connect the guide bars. Also, both erosion and dilation 
destroys the data in the code marker.  
 

 
Fig. 4.  Binary image created by adaptive threshold stage. 

 

E. Label and Extract Key Information 
The binary image is then labeled uniquely according to 8-

connected white regions. The MATLAB function bwlabel is 
used for labeling by taking two passes through the image. The 
first pass traverses row-by-row or column-by-column and 
assigns preliminary labels for each region found. It may occur 
that two regions with different labels could be the same 
region, so a second pass handles equivalencies by assigning a 
final label. 

After labeling the binary image, we must extract key 
information for each region: area, orientation, eccentricity, 
centroid, major axis length, and minor axis length. 
MATLAB’s regionprops function is used for this step. The 
key information is critical in defining metrics to search for 
candidate guide bars and cornerstones. 

 
 
 



O. Feinstein, EE368 Digital Image Processing – Final Report 
 

3 

F. Identify Visual Code Markers 
To find all of the visual code markers in the labeled image, 

the first step is to iterate through all of the unique labels and 
find potential vertical guide bars. This is accomplished by 
filtering out any regions that do not satisfy eccentricity and 
area conditions. For instance, the eccentricity as defined by 
MATLAB should be close to 1 for a guide bar. Also, if a 
human cannot see and read the visual code marker, then the 
computer likely will not either, thus there must be a constraint 
on size. Since the vertical guide bar is 7 elements long, a good 
threshold for size is typically 25 pixels or roughly 4 pixels per 
element. 

After finding a potential vertical guide bar, its orientation is 
used to locate a horizontal guide bar and three cornerstones. 
Only when the two guide bars and three cornerstones are 
found can a visual code marker be successfully classified. 

The process employed to find the horizontal guide bar and 
three cornerstones is exemplified in Figure 5. The technique 
essentially is to a project a line based on the orientation angle 
of the guide bars past the expected location of the target 
object. Then, the algorithm searches a window for the target 
object. If the object is found, the algorithm searches for the 
next target object, otherwise, it starts moving the window in 
the direction closest to the target object.  

The algorithm first searches for the horizontal guide bar by 
projecting a line from the centroid of the vertical guide bar. 
Then, if the horizontal guide bar is found, it projects a line 
from the centroid of the vertical guide bar in the opposite 
direction to find the upper right cornerstone. After finding the 
upper right cornerstone, a line is projected from the centroid of 
the horizontal guide bar to search for the lower left 
cornerstone. Finally, a decision needs to be made on how to 
search for the upper left cornerstone. Either the algorithm can 
project a line from the lower left cornerstone or it can project a 
line from the upper right cornerstone. Due to perspective in 
some images, the choice is made by taking the minimum of 
the absolute value of the orientation angle of the two guide 
bars to minimize the error. Therefore, the algorithm projects 
the line from the lower left cornerstone if the absolute value of 
the orientation angle of the vertical guide bar is less than the 
absolute value of the orientation angle of the horizontal guide 
bar, otherwise it projects from the upper right cornerstone. 

 
Fig. 5.  Algorithm to search for the horizontal guide bar and cornerstones. 

G. Read Code 
After obtaining the two guide bars and the three 

cornerstones, four point correspondences define the visual 
code marker plane. As in [1], the four points are the centroid 
of the horizontal guide bar and the centers of the three 
cornerstones: 

 

Element 
Image 

Coordinate 
Code 

Coordinate 
upper left cornerstone (x0,y0) (0,0) 
upper right cornerstone (x1,y1) (10,0) 
horizontal guide bar (x2,y2) (8,10) 
lower left cornerstone (x3,y3) (0,10) 

 
A code coordinate (u,v) can then be mapped to an image 

coordinate (x,y) by 
 

x = (au + bv + 10c) / (gu + hv + 10) 
 

y = (du + ev + 10f) / (gu + hv + 10) 
 

where the parameters a through h are calculated from the four 
point correspondences as follows: 
 

dx1 = x1 – x2,   dy1 = y1 – y2 
dx2 = x3 – x2,   dy2 = y3 – y2 

 
sig_x = 0.8x0 – 0.8x1 + x2 – x3 
sig_y = 0.8y0 – 0.8y1 + y2 – y3 

 
g = (sig_x*dy2 – sig_y*dx2) / (dx1*dy2 – dy1*dx2) 
h = (sig_y*dx1 – sig_x*dy1) / (dx1*dy2 – dy1*dx2) 

 
a = x1 – x0 + gx1   d = y1 – y0 +gy1 
b = x3 – x0 + hx3   e = y3 – y0 + hy3 
c = x0       f = y0 

 
To read the code, the algorithm traverses code coordinates 

column-by-column from top to bottom starting with code 
coordinate (0,2). Since the visual code marker has built-in 
white space surrounding the cornerstones and guide bars, not 
all of the 11x11 elements in the marker are read. Specifically, 
the algorithm only reads the data code coordinates. For 
example, the left-most two columns have 7 rows of valid data, 
the next three columns have 11, and the next four columns 
have 9, totaling 83 data bits. 

III. RESULTS 
To prove the robustness of the algorithm a set of 12 training 

images were provided. However, the training set provided 
could not possibly be sufficient to test the many possible code 
marker and camera orientations, thus 37 more images were 
added to the training set.  

The algorithm ran on average between a fraction of a 
second and three seconds, and had an accuracy of nearly 96%. 
The two images that the algorithm failed to detect the visual 
code marker were extreme cases where the camera was either 
too close with a severe perspective or at a perspective that 



O. Feinstein, EE368 Digital Image Processing – Final Report 
 

4 

skewed the cornerstones and made the horizontal guide bar 
appear much larger than the vertical guide bar.  

Figures 6-16 show pairs of images the algorithm succeeded 
on. The left image of the pair is the 24-bit RGB input image, 
and the right image is a binary image that highlights the 
vertical guide bar of each visual code marker found. 

 
 

  
Fig. 6.  training_8.jpg 
 

  
Fig. 7.  training_9.jpg 
 

  
Fig. 8.  training_10.jpg 
 

  
Fig. 9.  training_11.jpg 
 

  
Fig. 10.  training_2.jpg 
 

  
 Fig. 11.  training_29.jpg 
 

  
Fig. 12.  training_32.jpg 
 

  
Fig. 13.  training_45.jpg 
 

  
Fig. 14.  training_46.jpg 
 

  
Fig. 15.  training_49.jpg 
 

  
Fig. 16.  training_5.jpg 

 



O. Feinstein, EE368 Digital Image Processing – Final Report 
 

5 

IV. CONCLUSION 
An algorithm to identify visual code markers in 24-bit RGB 

images has been proposed. Employing a five-stage process, 
the algorithm identifies the origin of any visual code marker in 
the image and reads the 83-bit data associated with each 
marker. Various alternatives at certain stages were discussed. 
Several results were shown to prove the robustness of the 
algorithm. On average, the program did not run longer than 4 
or 5 seconds, making it near real-time for this particular 
application. The accuracy was very near perfection. 

Further work for this project could include optimizing the 
code to run faster, creating an even cleaner binary image from 
the adaptive thresholding stage, and exploring alternatives for 
identifying visual code markers that are severely skewed. 

ACKNOWLEDGEMENTS 
 Many thanks to Professor Bernd Girod, Chuo-Ling, and 
Aditya for conducting an excellent image processing class. 

REFERENCES 
[1] M. Rohs, “Real-World Interaction with Camera-Phones”, 2nd 

International Symposium on Ubiquitous Computing Systems (UCS 
2004), Tokyo, Japan, November 2004. 

[2] M. Rohs, “Visual Code Widgets for Marker-Based Interaction”, 
IWSAWC ’05: Proceedings of the 25th IEEE International Conference 
on Distributed Computing Systems – Workshops (ICDCS 2005 
Workshops), Columbus, Ohio, USA, June 6-10, 2005. 

 
 


